文档库 最新最全的文档下载
当前位置:文档库 › 钛酸锶粉体合成新方法研究

钛酸锶粉体合成新方法研究

钛酸锶粉体合成新方法研究
钛酸锶粉体合成新方法研究

钛酸锶粉体合成新方法研究

朱启安1,石荣恺2,黄伯清2,谭仪文3

(11湘潭大学化学学院,湖南湘潭411105;21湘潭大学物理系;31株州冶炼厂中心化验室)

摘要:以四氯化钛和氯化锶为原料、碳酸铵和氨水作沉淀剂化学共沉淀法合成钛酸锶粉体,研究了工艺条件对产品纯度和锶钛比的影响,最佳反应条件为:氯化锶与四氯化钛摩尔比为1.02,碳酸铵与氯化锶摩尔比为1.40,反应温度为室温,反应时间4h,p H=10,煅烧温度900e,煅烧时间4h。所得产品经化学、红外光谱、电镜、X)射线衍射和原子发射光谱分析,分析结果显示:产品纯度高、粒径小、锶钛比合适。

关键词:电子陶瓷;钛酸锶;合成;研究

中图分类号:TQ132.3+3文献标识码:A文章编号:1006-4990(2002)02-0005-03

1实验部分

111仪器与试剂

D90型电动搅拌器;FN101)1型鼓式干燥箱; SRJX)4)9型马弗炉;D/max-3C型X-射线衍射仪;S-570型扫描电镜仪;PE1710型红外光谱仪。

所有试剂均为分析纯。

TiCl4溶液:为抑制TiCl4水解,只能将其溶于3mol/L的盐酸。将TiCl4倒入一定体积的3mol/L 的盐酸中,然后准确移取25100mL TiCl4溶液于锥形瓶中,加5滴双氧水,加水至溶液体积200mL,再加25100mL EDTA标准溶液,加热至近沸,加20mL pH =5~6NH3)NH4Cl缓冲溶液,微沸1min,加10滴二甲酚橙指示剂,用Zn2+标准溶液返滴定,由此可求出TiCl4溶液的准确浓度。

SrCl2溶液:称取一定量的SrCl2#6H2O溶于水后,转入容量瓶中定容,再移取一定体积的SrCl2溶液于烧杯中,加硫酸沉淀锶,并加入60mL乙醇,用重量法测定锶的含量。

(NH4)2CO3溶液:称取9610g(NH4)2CO3溶于水,稀释至200mL,即得1mol/L的溶液。

NH3#H2O:取浓NH3#H2O11514m L,加水稀释至500mL,得到浓度约为3mol/L的溶液。

112实验原理与过程

取一定量的TiCl4和SrCl2溶液混合于分液漏斗中,再取一定量的(NH4)2CO3溶液和NH3#H2O混合于三口烧瓶中,开启搅拌器搅拌,将分液漏斗中的TiCl4和SrCl2混合溶液逐滴加入到三口烧瓶中,并不断用NH3#H2O调节溶液的pH值为10。反应一定时间后,抽滤、洗涤,将沉淀放入坩埚中,干燥、研细后,置于马弗炉内煅烧,即得SrTiO3粉体。

SrCl2+Ti Cl4+(NH4)2CO3+4NH3#H2O SrCO3+Ti(OH)4+6NH4Cl SrCO3+Ti(OH)4

煅烧

SrTiO3+CO2{+2H2O

1.3分析方法

按文献[1]介绍的方法测定Sr TiO3粉体中Sr O 和TiO2的含量。SrO的含量加TiO2的含量即为Sr TiO3的含量,并可求出Sr/Ti(摩尔比)。

2结果与讨论

211SrCl2与TiCl4的摩尔比

固定SrCl2/(NH4)2C O3(摩尔比)为114,反应时间4h,反应温度为室温,pH值为10,煅烧时间4h,煅烧温度880e,考察SrCl2与TiCl4的摩尔配比对产品纯度及Sr/Ti(摩尔比)的影响,实验结果见表1。

表1SrCl2与TiCl4摩尔比对产品纯度和Sr/T i的影响

SrCl2/Ti Cl4SrO/%TiO2/%纯度/%Sr/Ti 0198501814313194112019043

110256124431149913811005

110656166421739913911022

111056176411059718111066

从表1看出,当SrCl2/TiCl4为0198时,由于锶的量不足,钛过剩,因而产品中有过剩的TiO2,纯度较低,Sr/Ti不合要求;随着SrCl2/TiCl4增加,SrO含量增加,TiO2含量降低,当此比值大于1106时,锶过剩,此时产品中有过剩的SrCO3(SrC O3分解温度为1289e);而当此比值为1102时,共沉淀时生成的SrCO3和H4TiO4能完全定量地反应生成Sr TiO3粉体,纯度较高,Sr/Ti合适,故选取SrCl2/TiCl4为1102。

作者简介:朱启安,男,生于1964年,硕士,讲师。5

2002-03,34(2)朱启安钛酸锶粉体合成新方法研究

212 (NH 4)2CO 3和SrCl 2的摩尔比

取SrCl 2/TiCl 4(摩尔比)为1102,其它条件不变,考察(NH 4)2C O 3和SrCl 2的摩尔配比对产品纯度和Sr/Ti 的影响,实验结果见表2。从表2可以看出,当(NH 4)2C O 3用量较小时,Sr

2+

沉淀不完全,过剩的

H 4TiO 4在煅烧步骤中会生成TiO 2而混在产品Sr TiO 3中,因而纯度较低;而当(NH 4)2CO 3/SrCl 2为1140时,Sr

2+

能沉淀完全,产品纯度高、Sr/Ti 符合要求,故选

取(NH 4)2CO 3/SrCl 2为1140较合适。

表2 (NH 4)2CO 3和SrCl 2摩尔比对产品纯度和Sr/T i 的影响

(NH 4)2CO 3/SrCl 2

SrO/%TiO 2/%纯度/%Sr/Ti 1110541644414999113019471120541974319698193019641140561244311499138110051160561354310699141110081180

56130

43107

99137

11008

213 反应温度

由于共沉淀反应Sr 2++CO 2-3=SrCO 3和Ti

4+

+2H 2O=Ti(OH)4+4H +均很快,故反应不需要加热;相反,加热一方面会使沉淀溶解度增大,另一方面会使沉淀剂(NH 4)2CO 3分解,NH 3#H 2O 挥发,故一般选取反应温度为室温。214 反应时间

其它条件同上,只改变反应时间,结果见表3。

从表3可以看出,随反应时间增加,纯度增加,Sr/Ti 接近于1,反应更为充分,生成的共沉淀SrCO 3和H 4TiO 4混合更均匀,在后面的煅烧阶段SrCO 3与H 4TiO 4反应也越完全。反应时间达4h 时,纯度较高,Sr/Ti 也符合要求,故选取反应时间为4h 。

表3 反应时间对产品纯度和Sr/Ti 的影响

反应时间/h

SrO/%TiO 2/%纯度/%Sr/Ti 1521634214195104019572541304216896198019803551384219198129019954561244311499138110055

56120

43115

99135

11004

215 反应pH 值

随着反应的进行,溶液的酸度会增加,这一方面是由于在配制TiCl 4溶液时,为防止TiCl 4的水解加入了盐酸;另一方面随着TiCl 4和SrCl 2混合溶液的滴入,Ti 4+

的水解也会消耗溶液中的NH 3#H 2O 。由于溶液酸度的增加,会使共沉淀难于产生,因而需不断用NH 3#H 2O 调节溶液的pH 值。经实验,调节溶

液的pH 值为10即可使共沉淀沉淀完全,产品纯度

高,Sr/Ti 符合要求。216 煅烧温度

选取pH 值为10,其它条件同上,只改变煅烧温度,实验结果见表4。从表4可以看出,当煅烧温度大于880e 时,产品纯度高,Sr/Ti 符合要求,故选取煅烧温度为900e 。

表4 煅烧温度对产品纯度和Sr/Ti 的影响

煅烧温度/e

SrO/%TiO 2/%纯度/%Sr/Ti 700541444217497118019828005419143137

98128

019768505514243144981860198388056124431149913811005900

56121

43125

99146

11002

217 煅烧时间

现固定煅烧温度为900e ,其它条件不变,考察煅烧时间对产品质量的影响,实验结果见表5。 由表5可以看出,当煅烧时间大于4h 时,产品

质量较高,故选取煅烧时间为4h 最佳。

表5 煅烧时间对产品纯度和Sr/Ti 的影响

煅烧时间/h

SrO/%TiO 2/%纯度/%Sr/Ti 1531354210795142019782541654219997164019803551844311498198019974561214312599146110025

56125

43118

99143

11004

218 产品的表征与测试

21811 产品的原子发射光谱分析

取本产品和日本富士钛株式会社的Sr TiO 3产品(牌号为HST )1)及固相法产品(由SrC O 3与TiO 2混合高温煅烧生产)进行原子发射光谱分析,分析结果见表6。从表6可以看出,本法所得产品与HST )1相比杂质含量大体相当,但固相法产品杂质含量却要高,故本法所制得SrTiO 3粉体纯度高。21812 粉体的红外光谱分析(见图1)

图1 SrTiO 3粉体红外光谱图

图1为SrTiO 3粉体的红外光谱,从图1可以看

出,在558c m

-1

和450cm -1

有2个吸收峰,另外没有

6 INORGANIC C HEMICALS I NDUSTRY 无机盐工业 2002-03,34(2)

表6 钛酸锶粉体的原子发射光谱分析结果

%

所测元素Si Pb Sn Sb Fe M n V W HST )10.0020.002<0.001<0.0050.0010.00030.001<0.002固相法0.0030.0040.002<0.0050.0030.00030.002[0.001本法产品0.0020.002[0.001<0.0050.0020.0001<0.001<0.001所测元素Cr Ni Co Mg Cu Ca Al Bi HST-10.001<0.001[0.0050.0010.00020.020.001<0.001固相法0.001<0.001<0.0050.030.00040.050.003<0.001本法产品

0.001

<0.001

<0.005

0.002

0.0001

0.02

0.001

<0.001

别的吸收峰

,而此2吸收峰为SrTiO 3的特征吸收峰,故产品纯度高,不含其它阴离子杂质。21813 产品的X )射线衍射图(见图2)

图2 SrT i O 3粉体的XRD 图

图2是所制备的Sr TiO 3粉体的X )射线衍射图,由图2可见,所制备的Sr TiO 3粉体为单一的立方相,a =b =c =3.9095@10-10m ,A =B =C =90b 。

21814 电镜分析

为观察粉体的形貌,进行了扫描电镜分析,分析结果见图3。从图3可以看出,所制粉体粒径小、大小分布均匀,平均粒径小于015L m 。

图3 SrTiO 3粉体的SEM 图

219 工业化前景

早期的高压瓷介质电容器多为BaTiO 3基陶瓷,

但其易受外加高直流偏置电场作用引起极化,造成介质电压击穿,同时介电常数随外加电场的增大而急剧下降,使电容量大幅度下降。而SrTiO 3基陶瓷电容器克服了上述缺点,且它具有介电损耗低、温度

稳定性好等优点,大有逐渐取代Ba TiO 3基陶瓷电容器的趋势[2]。目前我国都是靠进口高纯Sr TiO 3粉体来维持生产,国内年需求量为2000t,高质量SrTiO 3粉体的国际市场价格一般在14000美元/t 左右。国内目前大多还是用SrC O 3和TiO 2混合经高温固相反应而制得,产品质量差,市场价格低,不能满足电子工业对高质量SrTiO 3粉体的需求。另外,我国还开展了TiCl 4和SrCl 2作反应物,H 2C 2O 4作沉淀剂合成Sr TiO 3的研究[3],但与本文方法相比,H 2C 2O 4价格较高,生产成本高,而产品质量却相当。因而用本

方法生产高质量Sr TiO 3粉体,经济效益高,市场前景广阔。3 结论

1)用SrCl 2#6H 2O 和TiCl 4作反应物,NH 3#H 2O 和(NH 4)2CO 3作沉淀剂,化学液相共沉淀法制备SrTiO 3粉体的最佳工艺条件为:SrCl 2/TiCl 4(摩尔比)=1.02,(NH 4)2CO 3/SrCl 2=1.40,反应温度为室温,反应时间4h,反应pH 值为10,煅烧温度900e ,煅烧时间4h 。

2)本法生产成本低,所得Sr TiO 3粉体为立方相,纯度高(纯度>9913%)、Sr/Ti 合适(0198~1102)、粒径小(平均粒径<015L m),适合电子工业对高质量钛酸锶粉体的需求。

3)生产工艺简单,易于实现工业化,市场前景广阔,经济效益显著。

参考文献:

[1] 张丽君1高纯、超细SrTi O 3中钛锶比的测定[J ]1硅酸盐通报,

1996,(1):64~671

[2] 李金良1改性SrTi O 3陶瓷电容器材料的化学制备及电性研究

[J]1无机化学学报,1995,11(1):35~391

[3] 唐育英1高纯、超细SrTiO 3粉料的研制[J]1无机材料学报,

1987,2(4):367~3701

(收稿日期:2001-10-19)

7

2002-03,34(2) 朱启安 钛酸锶粉体合成新方法研究

ABSTRACT

SPUTTERED ALUMINA POWDER AND IT.S CHANGE IN PLASM A FLAME.LUO Yuchang(Research Institute of Shandong A luminium Co.,ZIBO255061):Chin.J.Inorganic Chemicals Ind.34(2),2002,pp.3~4

The sputtered alumina was prepared by sintering process.In test the water cooling non-transference type plas ma spray gun was used,the working gases were N2,H2,with puri ty of99.9%.After melted by the plasma flame and quenched,the stabilizing phase A-Al

2

O3is transformed to sub-stabilizing phase C-Al2O3.The tests show that the procedure of the phase transfomation is as follow-

ing:A-Al2O3plasma flame

mel ted body

quenching

C-Al2O3

800e D-Al

2O3

1100e A-Al

2

O3.

Key Words:sputtered alu mina powder,plasma,phase change, spherical low sodium alumina

STUDY ON N EW METHOD FOR SYNTHESIS OF STR ON-TIUM TITANATE POWDER.Z H U Qi c an et al.(College of Chemistry,Xiangtan Uni.,Xiangtan411105):Chin.J.Inorganic Chemicals Ind.34(2),2002,pp.5~7

The stron tium titanate powder was synthesized by chemical co-precipitation method,when TiCl4and SrCl2#6H2O were used as raw materials and(NH4)2CO3and NH3#H2O as precipi tation agents.The influences of technology conditions on the purity of product and its ratio of Sr to Ti were studied.The optimal reaction conditions are as follows:SrCl2/T iCl4=1.02(mol);(NH4)2CO3/SrCl2=1.40;reac-ti on temperature:room temperature;reaction ti me=4h;pH=10; calcining temperature=900e;calcining time=4h.Product pre-pared was analyzed by chemical analysis,IR,SE M,X-Ray and AES,the analysis results show that the purity of strontiu m titanate powder p repared is high,particle diameter is small and the ratio of Sr to Ti is good.

Key words:electron ceramic,strontiu m ti tanate,synthesis,re-search

THE PREPARATION OF A NEW PbO2ELECTRODE.WANG Feng et al.(Analysis&Research Centr e,T on gj i University, Shanghai200092):Chin.J.Inorganic Chemicals Ind.34(2), 2002,pp.8~10

The PbO2electrode wi th Pt substance was studied.The perfor-mance of the plating electrode prepared under the different reaction conditions was tested and the opti mal conditions were obtained through XRD,XPS and SE M analytical means.It proves that the electrode has a good application.

Key words:lead dioxide,substance,plating

THE PREPARATION AN D APPLIC ATION OF THE VARIOUS CRYSTAL FOR M MODIFIED CALCIUM CAR BONATE WITH NANOMETER PARTICLE SIZE.LI U She j iang et al.(College of Chemical Technology,H ebei Univer sity o f T echnology,T ianjin 300130):Chin.J.Inorganic Chemicals Ind.34(2),2002,pp.11~ 13

The opti mal technological conditions for the preparation of nanometer CaCO3by carbonation method were introduced.The var-i ous crystal form modified nanometer CaCO3,such as chain,cubic and needle-like were synthesized and their properties and applica-tions were discussed.

Key words:calcium carbonate,crystal form controlled agen t, surface modified agent

SYNTHESIS OF AN TIBACTERIAL SILVER ZEOLITE.GAN Ge et al.(School of Chemical engineerin g,South China Univ.o f Tech.,Guangzhou510640):Chin.J.Inorganic Chemicals Ind.34 (2),2002,pp.14~16

Antibacterial zeolite material is an inorganic multiple-function material,which has various merits of acid-resistance,alkali-resis-tance,filter function,absorbing harmful gas,wide field antibacterial and durability of https://www.wendangku.net/doc/237949006.html,ing zeolite and antibacterial silver ion to synthesize antibacterial zeolite wi th the methods is used for testin g these two methods,and which were compared.The di fference be-tween antibacterial zeolite and zeolite have been compared by IR. Also the antibacterial capability of synthesized zeolite was tested.

Key words:zeolite,ion-exchange,IR;an tibacterial capabili ty

R&D AN D PROSPECT OF SOME INORGANIC SALT WHISKER.LI Huiqing et al.(Tian j in Institute of Seawater Desalination and M ultipurpose Utilization,Tian j in300192):Chin. J.Inorganic Chemicals Ind.34(2),2002,pp.17~19

The main uses of inorganic salt whiskers from sea-lake salt and limestone were introduced.The present status of synthesi s of these whiskers was outli ned.The domestic development and applica-tion of the whisker were reviewed and the domestic market prospects of the whiskers were discussed.The suggestions of inorganic salt whisker development in China were given.

Key words:inorganic salt development,synthesi s of whisker, compound material

PRESENT STATUS OF DEVELOPMENT AN D SUGGESTION FOR COMPREHENSIVE UTILIZATION OF PYR ITE FROM COAL MEASU RES.LUO Daocheng et al.(De p artment o f Chemical Engineerin g,Xiangtan Poly technic Univer sity,Xiangtan 411201):Chin.J.Inorganic Chemicals Ind.34(2),2002,pp.20~ 22

T he present status of developmen t about mi ning and recovery of pyri te from coal measures,its utilized path and comprehensive ut-i lization of pyrite cinder is in troduced.The suggestions for the deve-l opment of comprehensi ve utilization of pyrite from coal measures are given.

Key words:pyrite from coal measures,comprehensive utiliza-tion,p resent status of development,suggesti on

POLYMERIZATION AN D PREVENTION OF HYDR OCYAN IC ACID.H OU Wensheng et al.(Tianjin H uasheng Chemical Co. Ltd.,Tianjin300220):Chin.J.Inorganic Chemicals Ind.34(2), 2002,pp.23~25

The polymerization conditions and kinds of HCN are su mmed up.The polymerization mechanism and thermodynamics and dynam-ics factors are described,and the p revention methods of polymeriza-tion of HCN are also discussed.

Key words:polymerization of HCN,kinds,mechanism,preven-tion

1

Vol.34No.2,2002-03INORGANIC C HEMIC ALS I NDUSTRY Abstract

纳米氧化锆粉体的合成与表征

纳米氧化锆粉体的合成与表征 李杰119024189 无111 1 引言 二氧化锆是制备特种陶瓷最重要的原料之一,由于其具有优良的机械、热学、电学、光学性质而在高温结构材料、高温光学元件、氧敏元件、燃料电池等方面有着广泛的应用,它是2l世纪最有发展前景的功能材料之一。而控制氧化锆前驱粒子的颗粒尺寸对制备高性能氧化锆陶瓷具有重要意义。 本研究采用水/环己烷/辛基苯基聚氧乙烯醚(Triton X-100)/正己醇四元油包水体系,通过反相微乳液法制备了纳米ZrO2粉体,用TEM,XRD等对所制备的纳米粉体进行了表征,研究了煅烧温度、pH值、陈化时间对ZrO2纳米粒子结构与性能的影响。结果表明,以单斜相为主的ZrO2纳米粉体,其晶粒尺寸可控制在20 nm左右;随着煅烧温度的提高,ZrO2的结晶程度逐渐提高;随着pH值的提高,少量四方相ZrO2全部转化为单斜相;随着陈化时间的增加,ZrO2颗粒尺寸变大。 2 结构性质 自然界的氧化锆矿物原料,主要有斜锆石和锆英石。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。 3 用途 3.1 ZrO2在特种陶瓷中的应用 由于高纯ZrO2具有优良的物理化学性质,当其与某些物质复合时,在不同条件下又具有对电、光、声、气和温度等的敏感特性,使其广泛用于电子陶瓷、功能陶瓷和结构陶瓷等高新技术领域。 3.1.1 电子陶瓷 ZrO2在电子陶瓷中的应用主要有压电元件(如发火元件、助听器、拾音器等),滤波器(用于电视机、收录机、共电式无线电收发机等),超声波振荡器(用于潜艇音纳、鱼群探测器和测深仪等),蜂鸣器(用于电子计算机输入功率鉴定信号机、曲调桌式电子计算机、数字显示手表及闹钟等)及高温导体等。

钛酸锶粉体合成新方法研究

钛酸锶粉体合成新方法研究 朱启安1,石荣恺2,黄伯清2,谭仪文3 (11湘潭大学化学学院,湖南湘潭411105;21湘潭大学物理系;31株州冶炼厂中心化验室) 摘要:以四氯化钛和氯化锶为原料、碳酸铵和氨水作沉淀剂化学共沉淀法合成钛酸锶粉体,研究了工艺条件对产品纯度和锶钛比的影响,最佳反应条件为:氯化锶与四氯化钛摩尔比为1.02,碳酸铵与氯化锶摩尔比为1.40,反应温度为室温,反应时间4h,p H=10,煅烧温度900e,煅烧时间4h。所得产品经化学、红外光谱、电镜、X)射线衍射和原子发射光谱分析,分析结果显示:产品纯度高、粒径小、锶钛比合适。 关键词:电子陶瓷;钛酸锶;合成;研究 中图分类号:TQ132.3+3文献标识码:A文章编号:1006-4990(2002)02-0005-03 1实验部分 111仪器与试剂 D90型电动搅拌器;FN101)1型鼓式干燥箱; SRJX)4)9型马弗炉;D/max-3C型X-射线衍射仪;S-570型扫描电镜仪;PE1710型红外光谱仪。 所有试剂均为分析纯。 TiCl4溶液:为抑制TiCl4水解,只能将其溶于3mol/L的盐酸。将TiCl4倒入一定体积的3mol/L 的盐酸中,然后准确移取25100mL TiCl4溶液于锥形瓶中,加5滴双氧水,加水至溶液体积200mL,再加25100mL EDTA标准溶液,加热至近沸,加20mL pH =5~6NH3)NH4Cl缓冲溶液,微沸1min,加10滴二甲酚橙指示剂,用Zn2+标准溶液返滴定,由此可求出TiCl4溶液的准确浓度。 SrCl2溶液:称取一定量的SrCl2#6H2O溶于水后,转入容量瓶中定容,再移取一定体积的SrCl2溶液于烧杯中,加硫酸沉淀锶,并加入60mL乙醇,用重量法测定锶的含量。 (NH4)2CO3溶液:称取9610g(NH4)2CO3溶于水,稀释至200mL,即得1mol/L的溶液。 NH3#H2O:取浓NH3#H2O11514m L,加水稀释至500mL,得到浓度约为3mol/L的溶液。 112实验原理与过程 取一定量的TiCl4和SrCl2溶液混合于分液漏斗中,再取一定量的(NH4)2CO3溶液和NH3#H2O混合于三口烧瓶中,开启搅拌器搅拌,将分液漏斗中的TiCl4和SrCl2混合溶液逐滴加入到三口烧瓶中,并不断用NH3#H2O调节溶液的pH值为10。反应一定时间后,抽滤、洗涤,将沉淀放入坩埚中,干燥、研细后,置于马弗炉内煅烧,即得SrTiO3粉体。 SrCl2+Ti Cl4+(NH4)2CO3+4NH3#H2O SrCO3+Ti(OH)4+6NH4Cl SrCO3+Ti(OH)4 煅烧 SrTiO3+CO2{+2H2O 1.3分析方法 按文献[1]介绍的方法测定Sr TiO3粉体中Sr O 和TiO2的含量。SrO的含量加TiO2的含量即为Sr TiO3的含量,并可求出Sr/Ti(摩尔比)。 2结果与讨论 211SrCl2与TiCl4的摩尔比 固定SrCl2/(NH4)2C O3(摩尔比)为114,反应时间4h,反应温度为室温,pH值为10,煅烧时间4h,煅烧温度880e,考察SrCl2与TiCl4的摩尔配比对产品纯度及Sr/Ti(摩尔比)的影响,实验结果见表1。 表1SrCl2与TiCl4摩尔比对产品纯度和Sr/T i的影响 SrCl2/Ti Cl4SrO/%TiO2/%纯度/%Sr/Ti 0198501814313194112019043 110256124431149913811005 110656166421739913911022 111056176411059718111066 从表1看出,当SrCl2/TiCl4为0198时,由于锶的量不足,钛过剩,因而产品中有过剩的TiO2,纯度较低,Sr/Ti不合要求;随着SrCl2/TiCl4增加,SrO含量增加,TiO2含量降低,当此比值大于1106时,锶过剩,此时产品中有过剩的SrCO3(SrC O3分解温度为1289e);而当此比值为1102时,共沉淀时生成的SrCO3和H4TiO4能完全定量地反应生成Sr TiO3粉体,纯度较高,Sr/Ti合适,故选取SrCl2/TiCl4为1102。 作者简介:朱启安,男,生于1964年,硕士,讲师。5 2002-03,34(2)朱启安钛酸锶粉体合成新方法研究

粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述Powder metallurgy powder and preparation method of common 摘要:粉末冶金方法起源于公元前三千多年。制造铁的第一个方法实质上采用的就是粉末冶金方法。粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。本文介绍了粉末冶金粉体的制备方法,包括物理方法和化学方法,物理法包括机械粉碎法,化学法包括气相沉积法、雾化法和电解法,气相沉积法、雾化法和电解法目前在工业上已经得到了广泛的应用。 关键词:粉末冶金;粉体;气相沉积法,雾化法,电解法Abstract: the method of powder metallurgy originated in three thousand years . Manufacture of iron for the first method is essentially by powder metallurgy method. Powder metallurgy products, a wide range of applications, from the ordinary machinery manufacturing of precision instrument; from the hardware to the large machinery; from electronics to motor manufacturing; from the civilian industry to the military industry; from the general technology to sophisticated high technology, can see the figure of powder metallurgy

钛酸锶钡(BST)材料及其应用

钛酸锶钡(BST)材料及其应用 摘要 钛酸锶钡(BST)是一种电子功能陶瓷材料,广泛应用于电子、机械和陶瓷工业。本文对钛酸锶钡材料的组成、结构、性能、制备与应用等方面进行了一个比较全面的总结,重点展示了钛酸锶钡的铁电性、结构性能与掺杂改性,并详细介绍了钛酸锶钡薄膜和块体分别在微波移相器和高储能介电陶瓷中的应用。 1 BST的组成与结构 钛酸锶钡与钛酸锶、钛酸钡在结构方面具有非常高的相似性,这预示着它们之间的性能必然有着很紧密的联系。 1.1 钛酸钡简介 钛酸钡(BaTiO3)是一种强介电材料,是电子陶瓷中使用最广泛的材料之一,被誉为“电子陶瓷工业的支柱”。钛酸钡的电容率大(常温下介电常数 约2000)、非 r 线性强(可调性高),但严重依赖于温度和频率。 钛酸钡是一致性熔融化合物(即熔化时所产生的液相与化合物组成相同),其熔点为1618℃,在整个温区范围内,钛酸钡共有五种晶体结构,即六方、立方、四方、正交、三方,随着温度的降低,晶体的对称性越来越低[1]。在1460-1618℃结晶出来的钛酸钡属于非铁电的稳定六方晶系6/mmm点群;在1460-130℃之间钛酸钡转变为立方钙钛矿型结构,此时的钛酸钡晶体结构对称性极高,呈现顺电性(无偶极矩产生,无铁电性,也无压电性);当温度下降到130℃时,钛酸钡发生一级顺电-铁电相变(即居里点T c=130℃),在130-5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著的铁电性,其自发极化强度沿c轴[001]方向,晶胞沿着此方向变长;当温度从5℃下降到-90℃温区时,钛酸钡晶体转变成正交晶系mm2点群(通常采用单斜晶系的参数来描述此正交晶系的单胞,有利于从单胞中看出自发极化的情况),此时晶体仍具有铁电性,其自发极化强度沿着原立方晶胞的面对角线[011]方向;当温度继续下降到-90℃以下时,晶体由正交晶系转变为三方晶系3m点群,此时晶体仍具

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

燃烧法直接合成氧化铁纳米粉体

齐鲁工业大学 外文翻译 院系名称:材料科学与工程学生姓名:乔宁 专业班级:材化10-2 学号:201007021047 指导老师:夏国栋

燃烧法直接合成氧化铁纳米粉体:反应机理和性能 Kishori 德什潘德,亚历山大Mukasyan ,和Arvind 尔马 化学与生物分子工程系,分子工程材料中心、圣母大学、圣玛丽,印第安纳州46556,与化学工程学院、普渡大学、西拉斐特,印第安纳州47907 2100 接收于2004年3月23日 不同的氧化物溶液燃烧合成涉及自我持续的反应(如,金属硝酸盐) 的氧化剂和燃料(如甘氨酸、肼)之间。为三个主要的铁氧化阶段,即α -和γ-Fe2O3和Fe3O4,使用的燃烧方法和简单的前体,如铁硝酸盐和草酸盐,以及不同燃料的组合合成反应机制进行调查。第一次在文献中,基于所获得的基本知识、与井结晶结构和表面地区范围50?175 m2/g 的上述粉末生产同时避免额外的煅烧过程同时使用一种方法。它还显示利用复杂的燃料和氧化剂复杂是有吸引力的方法来控制产品组成和特性。 介绍 铁氧化物是许多科学和工业应用中最常用的金属氧化物。例如,R-Fe2O3(赤铁矿)被广泛用作颜料,以及用于醇的催化剂氧化来制备醛和酮,磁铁矿(Fe3O4)是在各种反应中的催化剂如合成氨,同时,γ-Fe2O3(磁赤铁矿)备受关注的多种用途,包括作为磁记录材料,在生物医学中的应用。基于上述需求,所需的相组成和高比表面积的粉末是必需的。目前,有氧化铁纳米粒子的合成的几种方法,包括热分解,热解,醇热,溶胶-凝胶法,水热过程(参见参考4-10)。然而,以前的方法没有报道过可以用于这些氧化物的直接合成法,在纯结晶状态,由一个单一的路线。 水(液)燃烧合成(CS)不同的氧化物,包括铁氧体,钙钛矿,和氧化锆(参见参考11-15)是个有吸引力的技术。它涉及到一个氧化剂(例如,金属硝酸盐)和燃料(例如,甘氨酸,肼)之间自我维持的反应。首先,反应物溶解于水,得到的溶液充分混合,达到反应介质的基本分子水平的均匀化。被加热到水的沸点和蒸发后,该溶液可以点燃或自燃的温度迅速升高(可达104°C/S)值为1500°C.同时为高,这自持反应初始混合物通常细结晶良好的粉体所需的组合物。铁氧化物此前一直燃烧法合成的使用相对罕见的和复杂的含有前体如铁 (n2h3coo)2(N2H4)和n2h5fe (n2h3-coo)3 H2O。上述金属肼羧酸盐热分解产生的主要γ-Fe2O3的平均粒径小于25纳米,具体的比表面积范围是40-75 m2/g 。 在目前的工作中,通过燃烧法合成三大氧化铁物相,比如R- 和γ-Fe2O3和 Fe3O4,是使用一个简单的结合体如硝酸铁和草酸以及不同的燃料的研究。基于所获得的知识和优化的合成参数(大气,燃料的氧化剂比,φ,稀释系统,等等),一个新的上述单相氧化物粉末一步范围在50-175平方米/ g的结晶结构和表面面积的合成开始发展。 如有疑问请联系:电话:(765)494—4075。传真:(765)494-0805。电子邮件:avarma@https://www.wendangku.net/doc/237949006.html,。 1) Cornell, R. M.; Schwertmann, U. The Iron Oxides. Structure, Properties, Reactions and Uses; VCH: Weinheim, 1996. (2) Zboril, R.; Mashlan, M.; Petridis, D. Chem. Mater. 2002, 14, 969.

钛酸锶陶瓷材料制备方法的进展

钛酸锶陶瓷材料 钛酸锶作为重要的、新兴的电子陶瓷材料,具有高的介电常数和高的折射常数,有显著的压电性能,是重要的铁电体,可作为介电材料和光电材料。 钛酸锶(SrTiO3 ) 是一种立方钙钛矿型复合氧化物,在室温下,满足化学计量比的钛酸锶晶体是绝缘体,但在强制还原或搀杂施主金属离子的情况下可以实现半导化。钛酸锶是重要的、新兴的电子陶瓷材料,具有高的介电常数和高的折射常数,有显著的压电性能,是重要的铁电体。,有稳定的电滞性质。在高温超导薄膜、催化、高温固体氧化物燃料电池、电极材料、电化学传感器、氧化物薄膜衬底材料、特殊光学窗口及高质量的溅射靶材等方面应用广泛,可作为介电材料和光电材料,用来制造高压陶瓷电容器、PTC 热敏电阻、晶界层电容器( Grain Boundary Layer Capacitor ,简称GBLC) 、电子元件、光催化电极材料,制造既有电容器功能又有吸收浪涌的压敏电阻器等,它们都具有高性能、高可靠性、体积小等优点。并且与钛酸钡材料相比,还具有介电损耗低、温度稳定性好,高耐电压强度等优点。 钛酸锶的物理特性:室温下,SrTiO3属于立方晶系,空间群Pm3m,禁带宽度约为3.2eV, a=b=c=0.39051nm,α=β=γ=90。是一种典型的AB03型钙钛矿型复合氧化物。许多文献报 道钛酸锶的居里温度T C=106K,当T

钛酸锶钡(BST)材料及其应用知识讲解

钛酸锶钡(B S T)材料 及其应用

钛酸锶钡(BST)材料及其应用 摘要 钛酸锶钡(BST)是一种电子功能陶瓷材料,广泛应用于电子、机械和陶瓷工业。本文对钛酸锶钡材料的组成、结构、性能、制备与应用等方面进行了一个比较全面的总结,重点展示了钛酸锶钡的铁电性、结构性能与掺杂改性,并详细介绍了钛酸锶钡薄膜和块体分别在微波移相器和高储能介电陶瓷中的应用。 1 BST的组成与结构 钛酸锶钡与钛酸锶、钛酸钡在结构方面具有非常高的相似性,这预示着它们之间的性能必然有着很紧密的联系。 1.1 钛酸钡简介 钛酸钡(BaTiO3)是一种强介电材料,是电子陶瓷中使用最广泛的材料之一, ε约2000)、被誉为“电子陶瓷工业的支柱”。钛酸钡的电容率大(常温下介电常数 r 非线性强(可调性高),但严重依赖于温度和频率。 钛酸钡是一致性熔融化合物(即熔化时所产生的液相与化合物组成相同),其熔点为1618℃,在整个温区范围内,钛酸钡共有五种晶体结构,即六方、立方、四方、正交、三方,随着温度的降低,晶体的对称性越来越低[1]。在1460-1618℃结晶出来的钛酸钡属于非铁电的稳定六方晶系6/mmm点群;在1460-130℃之间钛酸钡转变为立方钙钛矿型结构,此时的钛酸钡晶体结构对称性极高,呈现顺电性(无偶极矩产生,无铁电性,也无压电性);当温度下降到130℃时,钛酸钡发生一级顺电-铁电相变(即居里点T c=130℃),在130-5℃的温区内,钛酸钡为四方晶系4mm 点群,具有显著的铁电性,其自发极化强度沿c轴[001]方向,晶胞沿着此方向变长;当温度从5℃下降到-90℃温区时,钛酸钡晶体转变成正交晶系mm2点群(通常采用单斜晶系的参数来描述此正交晶系的单胞,有利于从单胞中看出自发极化的情况),此时晶体仍具有铁电性,其自发极化强度沿着原立方晶胞的面对角线[011]方向;当温度继续下降到-90℃以下时,晶体由正交晶系转变为三方晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。 1.2 钛酸锶简介 钛酸锶(SrTiO3)具有典型的钙钛矿型结构,熔点2060℃,是一种顺电体,具有低温介电常数高、介电损耗低、热稳定性好等优点,也是一种电子功能陶瓷材料。高质量的钛酸锶粉体用来制造高压电容器、晶界层电容器、压敏电阻、热敏电阻及其它电子元件,具有高性能、高可靠性、体积小等优点[2]。纯的钛酸锶在低温 ε约300),不易发生铁电相变(居里下仍保持较高的介电常数(常温下介电常数 r 点T c=-250℃),但加入Ca、Bi等改性后出现低温弛豫现象。

凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体

?电子陶瓷、陶瓷一金属封接与真空开关管用陶瓷管壳应用专辑? 凝胶固相反应法合成亚微米级钛酸锶钡陶瓷粉体 焦春荣,陈大明,仝建峰 (北京航空材料研究院,北京100095) Preparationof Sub-MicroBao.6Sro.4Ti03Ceramic PowdersbyGel-SolidMethod JIAOChun—rong,CHENDa—ming,TONGJian—feng (BeijingInstituteofAeronauticalMaterial,Beijing100095,China) Abstract:Sub—microBao6Sro4Ti03ceramicpowderswerepreparedbythegel—solidreactionmethodu—singTi02,BaC03andSrC03powdersasrawmaterials.DSCthermodynamicswasusedtoanalyzetheheatflowandaccuratetemperatureofeachreactionduringthepreparationprocess.Microstructure,phasestructureandgranularityofthepowderswereinvestigated.TheresultsshowthatreactiontemperatureofBao.6Sro.4Ti03ceramicpowderswasabout857℃.UniformlydispersedBao.6Sro.4Ti03powdersof0.5pmdiametercanbepreparedunderthetemperaturerangeof900。C~1000℃.Theparticlesizeofthesynthe—sizedpowdersisdeterminedbytheparticlesizeoftherawmaterials.Theparticlesizeincreasesduringtheheattreatmentbecauseofthecompositiondiffusion.Therefore,smallsizeparticlesoftherawmaterialsshouldbechosentoprepareforthesynthesizedpowdersofsmallsize. Keywords:Gel—solidmethod;Bao.6Sro4Ti03;Ceramic;Powders 摘要:以Ti0:和BaC0。,SrCO,粉体为原料,采用凝胶同相反应法合成了亚微米级Ba—Sr。TiO。陶瓷粉体。对凝胶固相反应过程进行了DSC热分析,并观察和测定了合成粉体的微观形貌、相结构和粒度分布。结果表明:Ba0。Sro。TiO。粉体合成温度对应于857℃,在9001000℃温度范围煅烧均可获得颗粒尺寸约0.5肛m、粒径分布均匀的Ba0。Sro。TiO。粉体。试验结果表明,凝胶固相合成Bao。Sr。。TiO。的粉体粒径取决于原料粉体尺寸,经高温煅烧后因各组元元素的互扩散导致粉体粒径有所长大,要获得更细的合成粉体应采用更细的粉体原料。 关键词:凝胶固相反应法;钛酸锶钡;陶瓷;粉体 中图分类号:TQl74文献标识码:A文章编号:1002—8935(2009)04—0054—05 钛酸锶钡陶瓷材料是一种优良的热敏材料、电容器材料和铁电压电材料[1_3],应用领域非常广泛。它的诸多优异的介电性能使得该材料系统在无铅电容器、微波传输、信号处理和测量等领域中的应用具有很大优势和潜力[4-s],而高性能的钛酸锶钡粉体是制备钛酸锶钡陶瓷的重要条件。凝胶固相反应法是传统的固相反应制粉工艺与陶瓷注凝成型工艺(Gelcasting)相结合而产生的一种新型粉体制备技术【7-10|。该工艺保证了原料成分在颗粒尺度的均匀混合,并解决了传统固相反应法各组元原料需靠压块达到紧密接触的目的;与化学共沉淀等液相法相比,则具有操作简单、效率高、成本低、原料来源广团至Q盟二些泛、普适性强、环境污染小等诸多优点。本文采用凝胶固相反应法制备出颗粒细小、分散均匀、结晶完好的亚微米级BaⅢSr。.。TiO。陶瓷粉体,并对粉体合成过程和相关问题进行了分析研究。 1试验方法 1.1粉体的合成工艺 凝胶固相反应法制备Ba。Sr…Ti0。粉体的工艺流程如图l所示。详细过程如下:使用BaC0。,SrC03,Ti02为原料,按BaO:SrO:Ti02为0.6:0.4:1.0的摩尔比,加入去离子水和少量聚丙烯酸铵分散剂,混合配制成固含量约50%(体积比)的水

钛酸锶陶瓷粉体制备方法的研究

钛酸锶陶瓷粉体制备方法的研究 华东理工大学东方贱人 摘要:钛酸锶具有高的介电常数和折射常数,是重要的铁电体。随着钛酸锶电子陶瓷应用越来越普遍和对其性能要求的不断提高,制备工艺已受到越来越多的关注,成为人们研究的热点之一。本文论述了钛酸锶陶瓷粉体的八种主要制备方法,介绍了各个方法的优缺点,并对其未来的发展趋势进行展望。 关键字:钛酸锶;制备方法;粉体 钛酸锶(SrTiO3)是一种复合氧化物,属于立方钙钛矿型。它是重要的、新兴的电子陶瓷材料,具有高介电常数、低电损耗、高热稳定性[1-5]和折射常数及显著压电性能,是非常重要的铁电体。中国材料网统计对钛酸锶系列纳米电子陶瓷材料进行了统计,钛酸锶粉体制成的陶瓷电容器就占了市场的20%,现在,全国对其需求量不断增加。我国拥有大量的钛矿和锶矿,钛酸锶的生产通常运用的是高温固相反应法,用这种方法能生产出较大颗粒,较高杂质含量的产品,所以我国对进口的高质量的钛酸锶依赖很大。因而对于我国来讲,研究制备高品质的钛酸锶产品有非常重要。这使得钛酸锶粉体的制备成为了当前钛酸锶材料研究领域的热点之一。为此,文章对钛酸锶粉体的制备方法进行了研究和综述。 1 制备方法 钛酸锶粉体的制备方法有:化学共沉淀法、分步沉淀法、固相反应发、化学气相沉积法(CVD)、水热法、溶胶-凝胶法、溅射法、水热电化学法和喷涂热分解法等。 1.1固相合成法(常规) 固相合成法就是将物质按照一定的比例配制成功,然后混合、分散、高温锻烧,就会得到钛酸锶粉体。一般固相合成法所需要的物质是TiO2和SrCO3(或者SrO4[6])的混合粉末。在过程中为了降低温度,加入烧结助剂LiO2和SiO2,然后去除碳酸盐,最后得到钛酸锶粉体。 虽然高温固相反应法在不断进行改善,但是其中的缺点还是非常多:(1)化学均匀型差就是把原料中的各个组分达到想要的合适的状态;(2)微波合成法的提高是非常明显的,但在反应的过程中温度太高,晶粒的尺寸就会增大;(3)有些不能出现的相可能会生成,就不能得到较高纯度的粉体;(4)之所以会表形成团聚体是因为较差的表面活性;(5)不能完全的进行反应。 1.2化学共沉淀法 共沉淀法就是将沉淀剂加入溶液中,这种溶液中含有教多种的金属阳离子,

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

钛酸锶

钛酸锶合成方法进展 学生姓名:李茂 学生学号: 201111101027 院(系):材料工程学院 年级专业:2011级材料科学与工程1班二〇一四年十二月

1 引言 无论在金属材料,还是在有机、无机非金属材料中,添加适量锶及其化合物都可改变其某些性能甚至使其具有特殊功能,故有“金属味精”之称。在锶资源中,钛酸锶(SrTiO3)就是其中一种重要的化合物。钛酸锶具有超导性、半导性、气敏性、热敏性及光敏性,界电损耗低、色散频率高,另外还有高介电常数、低电损耗等优点。与钙材料相比,具有更好的温度稳定性和高耐压强度,因此是电子工业中应用较广的一种电子陶瓷材料,可用于制造晶界层电容器、PTC热敏电阻、高压电容器、氧敏元件、电容-压敏复合功能元件;在存储器中用它替代SiO2可使存储量提高30倍以上;另外制成氧敏元件用于控制汽车稀薄燃烧的氧传感器,引起有关人员的广泛重视。本文就近年来国内外学者对钛酸锶的制备方法研究作一较详细的综述。 2 钛酸锶的制备方法研究进展 目前钛酸锶的制备方法主要有:溶胶-凝胶法、化学沉淀法、高温固相法、微波法、等离子体法以及水热法。 2. 1 溶胶-凝胶法 溶胶-凝胶法是一种制备SrTiO3薄膜的方法。一般以钛盐与锶盐为原料,以有机化合物为螯合物,在有机溶剂中制备均质的溶胶;凝胶经干燥后,于低温(900℃以下)焙烧数小时,便可制得钛酸锶粉末。徐明霞等以TiC14.SrCl2.6H2O为原料,采用溶胶-凝胶工艺(简称ISG工艺)合成了纳米SrTiO3陶瓷粉料。研究表明,由于柠檬酸等络合作用,溶胶稳定,凝胶分布均匀,在SrO_TiO2复合氧化物凝胶向结晶相的转变过程中,无中间相的简单氧化物生成,经处理后,前驱体SrO_TiO2可直接生成单一的立方SrTiO3相。在800℃煅烧0.5h的SrTiO3粉末结晶度好,粒径小于15nm。该工艺简单,在工业生产上有重要的应用前景。 钛酸锶有半导化的钛酸锶和绝缘的钛酸锶,绝缘的钛酸锶报道较多,而半导化的钛酸锶薄膜报道很少。赵苏串等采用溶胶-凝胶法,用醋酸锶、钛酸丁酯、乙醇铌做为前驱体,制备了均匀致密的掺铌钛酸锶多晶体薄膜。该薄膜表面平整无裂纹,元素分布均匀,晶粒尺寸小,结晶温度高,半导化性能良好。 2. 2 化学沉淀法 化学沉淀法是选用一种试剂作螯合剂,在一定条件下使锶和钛共同沉淀,生成锶钛前驱体;沉淀物经过滤、洗涤、干燥后,置于马弗炉中,在高温下煅烧若干小时,即得到高纯超细钛酸锶粉体。方惠会等是将净化过的偏钛酸打浆成悬浊液后,加入一定量的碳酸铵溶液,搅拌均匀,再加入一定量的氯化锶溶液,反应若干小时制得锶钛前驱体沉淀物的。最后制得的钛酸锶粉体粒径分布均匀,形貌

【CN109734434A】一种基于3D打印技术的极小曲面结构磷酸三钙钛酸锶钡复合生物陶瓷的制备方法

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910155907.8 (22)申请日 2019.03.01 (71)申请人 北京工业大学 地址 100124 北京市朝阳区平乐园100号 (72)发明人 曾勇 杨天浩  (74)专利代理机构 北京思海天达知识产权代理 有限公司 11203 代理人 刘萍 (51)Int.Cl. C04B 35/447(2006.01) C04B 35/622(2006.01) B28B 1/00(2006.01) B33Y 10/00(2015.01) B33Y 70/00(2015.01) A61L 27/42(2006.01) A61L 27/50(2006.01)A61L 27/56(2006.01) (54)发明名称一种基于3D打印技术的极小曲面结构磷酸三钙/钛酸锶钡复合生物陶瓷的制备方法(57)摘要一种3D打印具有极小曲面结构的磷酸三钙/钛酸锶钡复合陶瓷的制备方法,属于3D打印技术及生物陶瓷领域。DLP(数字光固化)3D打印技术具有成型速度快,打印模型精度高,成本低廉等优势。本发明组合物主要为:35-70vol%的磷酸三钙/钛酸锶钡复合陶瓷粉体,30-65vol%的光敏树脂预混液。本发明使用Rhino软件设计并优化极小曲面模型,将模型导入Q3DP软件进行切片并导出扫描数据,按照一定的比例配制浆料并进行球磨,将浆料导入到BESK打印机树脂槽中开始打印,打印完成后的坯体再放入中号炉中进行脱脂和烧结,最终得到结构稳定、力学性能优异,具有压电性能、生物相容性的磷酸三钙/钛酸锶钡 复合陶瓷。权利要求书1页 说明书3页 附图1页CN 109734434 A 2019.05.10 C N 109734434 A

粉体材料的合成与制备

《材料合成与制备》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:材料的合成与制备 所属专业:材料化学 课程性质:专业必修课 学分:2学分(36学时) (二)课程简介、目标与任务、先修课与后续相关课程; 课程简介: 材料的合成与制备课程是介绍现代材料制备技术的原理、方法与技能的课程,是材料化学专业一门重要的专业必修课程。 目标与任务:通过本课程的学习,使学生掌握材料制备过程中涉及的材料显微组织演化的基本概念和基本规律;掌握材料合成与制备的基本途径、方法和技能;掌握目前几种常见新材料制备方法的发展、原理、及制备工艺;培养学生树立以获取特定材料组成与结构为目的材料科学研究核心思想,培养学生发现、分析和解决问题的基本能力,培养创新意识,为今后的材料科学相关生产实践和科学研究打下坚实的基础。 先修相关课程: 无机化学、有机化学、物理化学、材料科学基础 (三)教材与主要参考书 教材:自编讲义 主要参考书: 1. 朱世富,材料制备科学与技术,高等教育出版社,2006 2. 许春香,材料制备新技术,化学工业出版社,2010 3. 李爱东,先进材料合成与制备技术,科学出版社,2013

二、课程内容与安排 第一章引言 1.1 材料科学的内涵 1.2 材料科学各组元的关系 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【掌握】:材料科学学科的内涵、材料科学学科的四组元、四组元间的相互关系。 【了解】:几个材料合成与制备导致不同组成与结构并最终决定性质与性能的科研实例。 【难点】:树立以获取特定材料组成与结构为核心的学科思想。 第二章材料合成与制备主要途径概述 2.1 基于液相-固相转变的材料制备 2.3 基于固相-固相转变的材料制备 2.4 基于气相-固相转变的材料制备 (一)教学方法与学时分配 讲授,2学时。 (二)内容及基本要求 主要内容:材料科学学科的产生、发展、内涵;材料科学与工程学科的四个基本组元:材料的合成与制备、材料的组成与结构、材料的性质与性能、材料的使用效能;材料科学四组元的相互关系。 【了解】:材料合成与制备的三种主要途径。 【难点】:三种主要途径选择与取舍的依据。

粉体的合成制备方法

粉体的合成制备方法发展状况 如今,粉体的合成制备经过多年的发展,制备合成方法已经变得各种各样按理论也可分为物理和化学方法等纳米粒子的制备方法很多,可分为物理方法和化学方法。 1.物理方法 (1)真空冷凝法用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 2)物理粉碎法通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备。 按照反应物的相可分为三类气相合成法,固相合成法和液相合成法。 一、气相合成法 (1)电阻加热法是通过电阻加热来实现气相粉体制备的方法,典型工艺如蒸

相关文档