文档库 最新最全的文档下载
当前位置:文档库 › 高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题
高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.

【思路点拨】本题包含两个问题:(1)A 、B 、P 共线?m+n=1,且OP mOA nOB ==成立;(2)上述条件成立?A 、B 、P 三点共线.

【证明】(1)由三点共线?m 、n 满足的条件.

若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数λ使AP AB λ=,即()OP OA OB OA λ-=-,∴(1)OP OA OB λλ=-+. 令1m λ=-,n=λ,则OP mOA nOB =+且m+n=1.

(2)由m 、n 满足m+n=1?A 、B 、P 三点共线.

若OP mOA nOB =+且m+n=1,则(1)OP mOA m OB =+-.

则()OP OB m OA OB -=-,即BP mBA =.

∴BP 与BA 共线,∴A 、B 、P 三点共线.

由(1)(2)可知,原命题是成立的.

【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.

举一反三:

【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.

【解析】 因为1212121(4)()233

AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线.

证明三点共线问题的方法

证明三点共线问题的方法 1、利用梅涅劳斯定理的逆定理 例1、如图1,圆内接ΔABC 为不等边三角形,过点A 、B 、C 分别作圆的切线依次交直线BC 、CA 、AB 于1A 、1B 、1C ,求证:1A 、1B 、1C 三点共线。 解:记,,BC a CA b AB c ===,易知1111AC C CC B S AC C B S ??= 又易证1 1 AC C CC B ?? .则112 2 2AC C CC B S AC b S CB a ????== ???. 同理12121212,BA c CB a A C b B A c ==.故111222 1112221AC BA CB b c a C B A C B A a b c ??=??=. 由梅涅劳斯定理的逆定理,知1A 、1B 、1C 三点共线。 2、利用四点共圆(在圆内,主要由角相等或互补得到共线) 例2 、如图,以锐角ΔABC 的一边BC 为直径作⊙O ,过点A 作⊙O 的两条切线,切点为M 、N ,点H 是ΔABC 的垂心.求证:M 、H 、N 三点共线。(96中国奥数 证明:射线AH 交BC 于D ,显然AD 为高。 记AB 与⊙O 的交点为E ,易知C 、H 、E 三点共线。 联结OM 、ON 、DM 、DN 、MH 、NH , 易知090AMO ANO ADO ∠=∠=∠=, ∴A 、M 、O 、D 、N 五点共圆,更有A 、M 、D 、N 四点共圆, 此时,0+180AND ∠∠=AMD 因为2AM AE AB AH AD =?=?(B 、D 、H 、E 四点共圆), 即 AM AD AH AM = ;又MAH DAM ∠=∠,所以AMH ADM ?? ,故AHM AMD ∠=∠ 同理,AHN AND ∠=∠。 因为0180AHM AHN AMD AND ∠+∠=∠+∠=,所以,M 、H 、N 三点共线。 3、利用面积法 如果S S EMN FMN =??,点E 、F 位于直线MN 的异侧,则直线MN 平分线段EF ,即M 、N 与 EF 的中点三点共线。 A B C C 1 B 1A 1

点共线与三线共点的证明方法

三点共线与三线共点的证明方法 公理 1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2.过不在一条直线上的三点,有且只有一个平面。 推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。 公理 3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 例1.如图,在四面体ABCD中作截图PQR, PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.求证M、N、 K三点共线. 由题意可知,M、N、K分别在直线PQ、

RQ 、RP 上,根据公理1可知M 、N 、K 在平面PQR 上,同理,M 、N 、K 分别在直线CB 、DB 、DC 上,可知M 、N 、K 在平面BCD 上,根据公理3可知M 、N 、K 在平面PQR 与平面BCD 的公共直线上,所以M 、N 、K 三点共线. 例2.已知长方体1111ABCD A B C D -中,M 、N 分别为1AA 与AB 的中点,求证:1 D M 、DA 、CN 三线共点. 由M 、N 分别为1AA 与AB 的中点知1//MN A B 且112MN A B =,又1A B 与1D C 平行且相等,所以1//MN D C 且112MN D C =,根据推论3可知M 、N 、C 、1D 四点共面,且1D M 与CN 相交,若1D M 与CN 的交点为K ,则点K 既在平面11ADD A 上又在平面ABCD 上,所以点K 在平面11ADD A 与平面ABCD 的交线DA 上,故1 D M 、DA 、CN 三线交于点K ,即三线共点. 从上面例子可以看出,证明三线共点

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

三点共线与三线共点的证明办法

三点共线与三线共点的证明方法 公理1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2.过不在一条直线上的三点,有且只有一个平面。 推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。 公理3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 例1.如图,在四面体ABCD 中作截图PQR ,PQ 、CB 的延长线交于M ,RQ 、DB 的延长线交于N ,RP 、DC 的延长线交于K .求证M 、N 、K 三点共线. 由题意可知,M 、N 、K 分别在直线PQ 、RQ 、RP 上,根据公理1可知M 、N 、K 在平面PQR 上,同理,M 、N 、K 分别在直线CB 、 DB 、DC 上,可知M 、N 、K 在平面BCD 上, 根据公理3可知M 、N 、K 在平面PQR 与平面BCD 的公共直线上,所以M 、N 、K 三点共线. 例2.已知长方体1111ABCD A B C D -中,M 、N 分别为1AA 与AB 的中点,求证:1D M 、DA 、CN 三线共点. 由M 、N 分别为1AA 与AB 的中点知1//MN A B 且112MN A B =,又1A B 与1D C 平行且相等,所以1//MN D C 且112MN D C =,根据推论3可知M 、N 、C 、1D 四点共面,且1D M 与CN 相交,若1D M 与CN 的交点为K ,则点K 既在平面11ADD A 上又在平面ABCD 上,所以点K 在平面11 ADD A

与平面ABCD的交线DA上,故 D M、DA、CN三线交于点K,即三线 1 共点. 从上面例子可以看出,证明三线共点的步骤就是,先说明两线交于一点,再证明此交点在另一线上,把三线共点的证明转化为三点共线的证明,而证明三点共线只需要证明三点均在两个相交的平面上,也就是在两个平面的交线上。

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用 蒋李萍 2011年10月24日 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =)得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+ ∴()OB OA μOC OA -=- ∴AB μAC = ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+,且1λμ+=.揭示了三点共线的又一个性质; 3. 特别地,12λμ== 时,1 ()2 OB OA OC =+,点B 为AC 的中点,揭示了OAC 中线OB 的一个向量公式,应用广泛. 应用举例: 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且1 3 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+,且1λμ+=. 证明:由已知BD BA BC =+,又点N 在BD 上,且1 3 BN BD = ,得 1111()3333BN BD BA BC BA BC ==+=+ 又点M 是AB 的中点, 1 2BM BA ∴=,即2BA BM = 21 33BN BM BC ∴=+ 而21133 += ∴M 、N 、C 三点共线. D A B C M N

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点 共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线, (设直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则y x 4 1 的最小值是 解:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线 AP xAB yAC u u u r u u u r u u u r Q 1x y 且x>0,y>0 14141444()1()()145y x y x x y x y x y x y x y x y   Q x>0,y>040,0y x x y 由基本不等式可知:4424y x y x x y x y ,取等号时

初中数学竞赛:证明三点共线

初中数学竞赛:证明三点共线 【内容提要】 1.要证明A,B,C三点在同一直线上, 常用方法有:①连结AB,BC证明∠ABC是平角 ②连结AB,AC证明AB,AC重合 ③连结AB,BC,AC证明AB+BC=AC ④连结并延长AB证明延长线经过点C 2.证明三点共线常用的定理有: ①过直线外一点有且只有一条直线和已知直线平行 ②经过一点有且只有一条直线和已知直线垂直 ③三角形中位线平行于第三边并且等于第三边的一半 ④梯形中位线平行于两底并且等于两底和的一半 ⑤两圆相切,切点在连心线上 ⑥轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上 【例题】 例1.已知:梯形ABCD中,AB∥CD,点P是形内的任一点,PM⊥AB, PN⊥CD 求证:M,N,P三点在同一直线上 ∵AB∥CD,∴EF∥CD ∠1+∠2=180 ,∠3+∠4=180 ∵PM⊥AB,PN⊥CD ∴∠1=90 ,∠3=90 ∴∠1+∠3=180 ∴M,N,P三点在同一直线上 例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直线上 已知:平行四边形ABCD中,M,N分别是AD和BC的中点,O是AC和BD的交点

求证:M ,O ,N 三点在同一直线上 证明一:连结MO ,NO ∵MO ,NO 分别是△DAB 和△CAB 的中位线 ∴MO ∥AB ,NO ∥AB 根据过直线外一点有且只有一条直线和已知直线平行 ∴ M ,O ,N 三点在同一直线上 证明二:连结MO 并延长交BC 于N , ∵MO 是△DAB 的中位线 ∴MO ∥AB 在△CAB 中 ∵AO =OC ,ON , ∥AB ∴BN , =N , C ,即N , 是BC 的中点 ∵N 也是BC 的中点, ∴点N ,和点N 重合 ∴ M ,O ,N 三点在同一直线上 例3.已知:梯形ABCD 中,AB ∥CD ,∠A +∠B =90 ,M ,N 分别是AB 和CD 的中点,BC ,AD 的延长线相交于P 求证:M ,N ,P 三点在同一直线上 证明:∵∠A +∠B =90 , ∠APB =Rt ∠ 连结PM ,PN 根据直角三角形斜边中线性质 PM =MA =MB ,PN =DN =DC ∴∠MPB =∠B ,∠NPC =∠B ∴PM 和PN 重合 ∴M ,N ,P 三点在同一直线上 ,

平面向量基本定理03913

2.3.1平面向量基本定理 学习目标: 1. 了解基底的含义,理解平面向量基本定理,会用基底表示平面内任一向量. 2. 掌握两个向量夹角的定义以及两向量垂直的定义. 3. 两个向量的夹角与两条直线所成的角. 学习重点:平面向量基本定理 学习难点:两个向量的夹角与两条直线所成的角. 课上导学: [基础初探] 教材整理1平面向量基本定理 阅读教材P93至P94第六行以上内容,完成下列问题. 1. ____________ 定理:如果e i, e是同一平面内的两个向量,那么对于这一平面内的____________ 向量a, ______________ 实数入,入2,使a= _________________________ 2. ____________ 基底:___________________________ 的向量e1, e2叫做表示这一平面内______________________________ 向量的一

组基底. 判断(正确的打“,错误的打“X” ) (1) 一个平面内只有一对不共线的向量可作为表示该平面内所 有向量的基底.() (2) 若e i, e是同一平面内两个不共线向量,则入& + 说 k, 入2为实数)可以表示该平面内所有向量.() (3) 若ae i + be2=ce i + de2(a, b, c, d€ R),则a = c, b = d.( ) 教材整理2两向量的夹角与垂直 阅读教材P94第六行以下至例1内容,完成下列问题. 1. __________________ 夹角:已知两个_________________ a 和b,作OA= a, OB= b,则__ = B叫做向量a与b的夹角.

必修四平面向量基本定理

平面向量基本定理 [学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一 平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG → , a . 答案 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF → =4e 1-4e 2, GH → =-2e 1+5e 2,HG → =2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直 (1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB → =b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a⊥b .

思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC → 的夹角为60°; ②AB →与CA → 的夹角为120°; ③BA →与CA → 的夹角为60°; ④AB →与BA → 的夹角为180°. 题型一 对向量的基底认识 例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量; ②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2= λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③ 解析 由平面向量基本定理可知,①④是正确的. 对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的. 对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个. 跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)

向量证明三线共点与三点共线问题.doc

用向量证明三线共点与三点共线问题 山东徐鹏 三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则 简捷得多. 证明A、 B、 C 三点共线,只要证明AB 与AC 共线即可,即证明AB AC .证明三线共点一般须证两线交点在第三条直线上. 例 1.证明:若向量OA 、OB 、OC 的终点A、B、C 共线,则存在实数、,且1, A B C O 图1 使得OC OA OB ;反之,也成立. 的终点 A 、 B 、 C 共线,则证明:如图 1 ,若OA 、OB 、 OC AB BC BC m AB BC OC OB AB OB OA OC OB m(OB OA) OC mOA (1 m)OB m, 1 m, , ,且1, OC OA OB OC OA OB 1, 1 OC OA (1 )OB OC OB OA OB BC BA BC和 BA OA OB OC 例 2.证明:三角形的三条中线交于一点. 证明:如图 2,D、E、F 分别是ABC三边上的中

C D E G A F B 图2 点. 设 CA a, CB b, AD BE G.设 AG AD, BG BE .则 AG AB BG (b a) BE (b a) ( BC 1 CA) b a ( 1 a b) 1 ( 2 1 b) 2 1 b 1)a (1 )b ,又 AG AD (AC CD) ( a a 2 2 2 1 1 2 2 3 所以解得 1 2 1 2 3 则 CG CA AG a 2 AD a 2 ( a 1 b) 1 a 1 b 1 1 3 2 3 2 3 3 CF a b,所以 CG CF ,所以G在中线CF上,所以三角形三条中线交于一点. 2 2 3

三点共线经典题型

三点共线经典题型 例1如图△ABC,D是△ABC内的一点,延长BA至点E,延长DC至点F,使得AE=CF,G,H,M分别为BD,AC,EF的中点,如果G,H,M三点共线,求证:AB=CD. 分析 由三角形的中位线得,MS∥AE,MS=0.5AE,HS∥CF,HS=0.5CF 由已知得HS=SM,从而得出∠SHM=∠SMH,则得出∠TGH=∠THG,GT=TH,最后不难看出AB=CD. 解答: 证明:取BC中点T,AF的中点S,连接GT,HT,HS,SM, ∵GHM分别为BD,AC,EF的中点, ∴MS∥AE,MS=0.5AE,HS∥CF,HS=0.5CF ∵GT∥CD,HT∥AB,GT=0.5CD,HT=0.5AB, ∴GT∥HS,HT∥SM ∴∠SHM=∠TGH,∠SMH=∠THG, ∴∠TGH=∠THG, ∴GT=TH,

∴AB=CD. 例2如图,已知菱形ABCD,∠B=60°,△ADC内一点M满足∠AMC=120°,若直线BA与CM交于点P,直线BC与AM交于点Q,求证:P,D,Q三点共线. 资料个人收集整理,勿做商业用途 分析 求证:P,D,Q三点共线就是证明平角的问题,可以求证∠PDA+∠ADC+∠CDQ=180°,根据△PAC∽△AMC,△AMC∽△ACQ,可以得出∠PAD=∠DCQ=60°;进而证明△PAD∽△DCQ,得出∠APD=∠CDQ,则结论可证资料个人收集整理,勿做商业用途 解答连接PD,DQ, 由已知∠PAC=120°,∠QCA=120°, ∴△PAC∽△AMC,△AMC∽△ACQ.资料个人收集整理,勿做商业用途 ∴PA/AM=AC/MC,AC/AM=QC/MC ∴AC2=PA?QC,又AC=AD=DC. ∴PA/DC=AD/QC,又∠PAD=∠DCQ=60°, ∴△PAD∽△DCQ,∴∠APD=∠CDQ. 资料个人收集整理,勿做商业用途 ∴∠PDA+∠ADC+∠CDQ=180°,

平面向量的基本定理

平面向量的基本定理 各位老师大家好,今天,我说课的内容是:人教B版必修4第二章第二节《平面向量的基本定理》第一课时,我将从教材分析、学生分析、教学方法和手段、教学过程以及教学评价五个方面进行分析 一、说教材 1.关于教材内容的分析 (1)平面向量基本是共线向量基本定理的一个推广,将来还可以推广到空间向量,得到空间向量基本定理,这三个定理可以看成是在一定范围内向量分解的唯一性定理。所以它是进一步研究向量问题的基础;是解决向量或利用向量解决问题的基本手段。 (2)平面向量基本定理揭示了平面向量的基本关系和基本结构,是进行向量运算的基本工具,它、也为平面向量坐标表示的学习打下基础。 (3)平面向量基本定理蕴涵了一种十分重要的数学思想——转化思想,因此,有着十分广阔的应用空间。 2.关于教学目标的确定 根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。 1、①了解平面向量基本定理及其意义,会做出由一组基地所表示的向量

②会把任意向量表示为一组基地的线性组合。掌握线段中点的向量表达式 2、通过对平面向量基本定理的归纳,抽象、概况,体验定理的产生和形成过程,提高学生抽象的能力和概括的能力 3、通过对定理的应用增强向量的应用意识,进一步体会向量是处理几何问题的强有力的工具。 3.重点和难点的分析 掌握了平面向量基本定理,可以使向量的运算完全代数化,将数与形紧密地结合起来,这样许多几何问题就转化为学生熟知的数量运算,这也是中学数学课中学习向量的目的之一,所以我认为对平面向量基本定理的应用是本节课的重点。另外对向量基本定理的理解这一点对于初学者来说有一定难度,所以是本节的难点。突破难点的关键是在充分理解向量的平行四边形法则的和向量共线的充要条件下多方位多角度的设计有关训练题从而加深对定理的理解。 二、说教学方法与教学手段 结合新课标“以学生为本”的课堂教学原则和实际情况,确定新课教学模式为:质疑—合作—探究式。 此模式的流程为激发兴趣--发现问题,提出问题--自主探究,解决问题--自主练习, 采用多媒体辅助教学,增强数学的直观性,实物投影的使用激发学生的求知欲。

点共线问题的证明方法

一、点共线问题 证明点共线,常常采用以下两种方法:①转化为证明这些点是某两个平面的公共点,然后根据公理3证得这些点都在这两个平面的交线上;②证明多点共线问题时,通常是过其中两点作一直线,然后证明其他的点都在这条直线上. 1.如图1,正方体1111ABCD A BC D -中,1AC 与截面1DBC 交O 点,AC BD ,交M 点,求证:1C O M ,,三点共线. 证明:连结11AC ,1C ∈ 平面11A ACC ,且1C ∈平面1DBC , 1C ∴是平面11A ACC 与平面1DBC 的公共点. 又M AC M ∈∴∈ , 平面11A ACC . M BD M ∈∴∈ ,平面1DBC . M ∴也是平面11A ACC 与平面1DBC 的公共点. 1C M ∴是平面11A ACC 与平面1DBC 的交线.O 为1AC 与截面1DBC 的交点, O ∴∈平面11A ACC O ∈,平面1DBC ,即O 也是两平面的公共点. 1O C M ∈∴,即1C M O ,,三点共线. 2.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线(在同一条直线上). 分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线. 证明 ∵ AB//CD , AB ,CD 确定一个平面β. 又∵AB ∩α=E ,AB β,∴ E ∈α,E ∈β, 即 E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵ 两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴ E ,F ,G ,H 四点必定共线. 点 评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.

向量法证明三点共线的又一方法及应用 -

向量法证明三点共线的又一方法及应用 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+u u u r u u u r u u u r ,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =u u u r u u u r )得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+u u u r u u u r u u u r u u u r u u u r ∴()OB OA μOC OA -=-u u u r u u u r u u u r u u u r ∴AB μAC =u u u r u u u r ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+u u u r u u u r u u u r ,且1λμ+=.揭示了三点贡献的又一个性质; 3. 特别地,12λμ==时,1()2 OB OA OC =+u u u r u u u r u u u r ,点B 为AC u u u r 的中点,揭示了OAC V 中线OB 的一个向量公式,应用广泛. 应用举例 例 1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明 BN λBM μBC =+u u u r u u u u r u u u r ,且1λμ+=. D A B C M N

向量证明三线共点与三点共线问题

用向量证明三线共点与三点共线问题 山东 徐鹏 三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则简捷得多. 证明A 、B 、C 三点共线,只要证明AB 与AC 共线即可,即证明AC AB λ=.证明三线共点一般须证两线交点在第三条直线上. 例1. 证明:若向量OA 、OB 、OC 的终点A 、B 、C 共线,则存在实数λ、μ, 且1=+μλ,使得OB OA OC μλ+=;反之,也成立. 证明:如图1,若OA 、OB 、OC 的终点A 、B 、C 共线,则AB //BC ,故存在实数m,使得AB m BC =,又OB OC BC -=,OA OB AB -=,故)(OA OB m OB OC -=-, OB m OA m OC )1(++-=.令,1,m m +=-=μλ则存在,1,,=+μλμλ且使得 OB OA OC μλ+=. 若OB OA OC μλ+=,其中,1=+μλ则λμ-=1,OB OA OC )1(λλ-+=.从而有OC -OB =λ(OA -OB ),即BA BC λ=.又因为BA BC 和有公共点B,所以A 、B 、C 三点共线,即向量OA 、OB 、OC 的终点A 、B 、C 共线. 例2. 证明:三角形的三条中线交于一点. 证明:如图2,D 、E 、F 分别是ABC ?三边上的中 A O B C 图1

点. 设BE BG AD AG G BE AD b CB a CA μ===?==,,,.设.则 =-+-=++-=+-=+=)2 1( )2 1()()(b a a b CA BC a b BE a b BG AB AG μμμ b a )1(1(2 1μμ-+-),又b a b a CD AC AD AG λλλλλ2 1)2 1()(+-=+-=+== ?????? ? ==??????? -=-=-323 2121121μλμλμλ解得 所以 则b a b a a AD a AG CA CG 3131)21(323 2+ = + -+=+ =+= b a CF 2 121+ = ,所以CF CG 3 2=,所以G 在中线CF 上,所以三角形三条中线交于一点. A B C E D F 图2 G

证明三点共线的几种方法

证明三点共线的几种方法 贵阳市三十九中学 李明 在高中数学学习中,许多同学感觉到对所学的基本概念,基本公式已经理解,熟练。但解题时却力不从心,无从入手。究其原因:是学生缺乏对解题策略的探究。所以,多种方法解题,是可以帮助学生消化基础知识,优化思维素质,提高分析问题和解决问题能力的。 现就人教版高中第二册(上)第87页第3题的多种解法如下: 题目:证明三点A (-2,12),B(1,3),C (4,-6)在同一条直线上。 一、用解析法解题: 解(1): ∵两点确定一条直线, ∴直线AB 的斜率K AB =Y B -Y A X B -X A = -3 直线AC 的斜率K AC = Y C -Y A X C -X A = -3 ∵K AB = K AC 则直线AB,AC 平行,两直线共起点A 点, ∴直线AB,AC 重合, ∴A,B,C 三点共线。 解(2): 由直线方程的两点式求得直线AB 的方程:3x+y -6=0 把点C 坐标代入直线AB 的方程,得: 3×4-6-6=0 ∵C 点在直线AB 上, ∴A,B,C 三点共线。 解(3): 直线夹角为0来证明三点共线 直线AB 的斜率K AB = Y B -Y A X B -X A = -3 直线AC 的斜率K AC = Y C -Y A X C -X A = -3 设直线AB 与直线AC 的的夹角为 θ,则 tan θ=|K AB -K AC 1+ K AB ?K AC |= 0 又∵0≤θ<1800 ∴θ=0 ∴A,B,C 三点共线。 解(4)的面积为0证明三点共线 ∵直线AB 的方程为:3x+y-6=0 ∴点C (4,-6)到直线AB 的距离d= |3×4-6-6| 32+12 = 0 又∵|AB|=(3-12)2+(1+2)2 =310

三点共线,线共点

第三讲 点共线、线共点 在本小节中包括点共线、线共点的一般证明方法及梅涅劳斯定理、塞瓦定理的应用。 1. 点共线的证明 点共线的通常证明方法是:通过邻补角关系证明三点共线;证明两点的连线必过第三点;证明三点组成的三角形面积为零等。n (n ≥4)点共线可转化为三点共线。 例1 如图,设线段AB 的中点为C ,以AC 和CB 为对角线作平行四边形AECD , BFCG 。又作平行四边形CFHD ,CGKE 。求证:H ,C ,K 三点共线。 证 连AK ,DG ,HB 。 由题意,AD EC KG ,知四边形AKGD 是平行四边形,于是AK DG 。同样可证AK HB 。四边形AHBK 是平行四边形, 其对角线AB ,KH 互相平分。而C 是AB 中点,线段KH 过C 点,故K ,C ,H 三点共线。 A B C D E F H K G

例2 如图所示,菱形ABCD 中,∠A =120 O 为△ABC 外接圆,M 为其上 一点,连接MC 交AB 于E ,AM 交CB 延长线于F 。求证:D ,E ,F 三点共线。 证 如图,连AC ,DF ,DE 。 因为M 在 O 上, 则∠AMC =60°=∠ABC =∠ACB , 有△AMC ∽△ACF ,得 CD CF CA CF MA MC = =。 又因为∠AMC =BAC ,所以△AMC ∽△EAC ,得 AE AD AE AC MA MC = =。 所以 AE AD CD CF = ,又∠BAD =∠BCD =120°,知△CFD ∽ △ADE 。所以∠ADE =∠DFB 。因为AD ∥BC ,所以∠ADF =∠DFB =∠ADE ,于是F , E ,D 三点共线。 例3 四边形ABCD 内接于圆,其边AB 与DC 的延长线交于点P ,AD 与BC 的延长线交于点Q 。由Q 作该圆的两条 切线QE 和QF ,切 点分别为E ,F 。求证:P ,E ,F 三点共线。 证 如图。 连接PQ ,并在PQ 上取一点M ,使得 B , C ,M ,P 四点共圆,连CM ,PF 。设PF 与圆的另一交点为E ’, C E (E ')A B D F P M Q G

平面向量基本定理

2.3.1 平面向量基本定理 【学习目标】 (1)了解平面向量基本定理;理解向量夹角的定义; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法; (3)培养学生观察、抽象概括、合作交流的能力.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 【学习重点】平面向量基本定理. 【学习难点】平面向量基本定理的理解与应用. 教学过程 一、学情分析,课前导入 前面我们学习过了向量的线性运算及共线向量定理。本节我们继续研究向量的其它性质,在学习之前我们来复习一下前面的内容, 二、提出问题,引入新课 师:如果向量a与非零向量b共线,那么a与b满足什么样的等式? 生:a=λb. 师:这就是我们上节课学习的共线向量定理(放幻灯片2) 结论:如果向量a与非零向量b共线,那么有且只有一个实数λ,使a=λb. (2)引导探究 师:如果a与b不共线,则上述结论还成立吗? (学生讨论) 结论:不成立. 师:也就是说一个向量不能表示另一个与它不共线的向量,两个向量能不能表示出与它们不共线的向量呢?我们来看:(幻灯片3) 师:我平时没事的时候喜欢看一些军事新闻,元旦时我看到这一新闻:新华社(12月31日电),来自中国航天科工集团第四研究院的消息,我们快舟-11固体运载火箭将于2018年上半年首飞,可一次性实现星座的快速构建,大幅提升发射效率和降低运载成本,怎么样,这技术,利害了,我的国!你们看下面的这个图:(幻灯片4) 在物理中速度可以合成,也可以分解。合成即向量的加法,分解也可以推广到向量中来。 师:我们先分析一下向量加法过程 三、任务下达,课堂探究

(完整word版)高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA u u u r 、OB uuu r 、OP uuu r 是三个有共同起点的不共线向量,求证: 它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==u u u r u u u r u u u r . 【思路点拨】本题包含两个问题:(1)A 、B 、P 共线?m+n=1,且OP mOA nOB ==u u u r u u u r u u u r 成立;(2)上述条件成立?A 、B 、P 三点共线. 【证明】(1)由三点共线?m 、n 满足的条件. 若A 、B 、P 三点共线,则AP u u u r 与AB u u u r 共线,由向量共线的条件知存 在实数λ使AP AB λ=u u u r u u u r ,即()OP OA OB OA λ-=-u u u r u u u r u u u r u u u r ,∴(1)OP OA OB λλ=-+u u u r u u u r u u u r . 令1m λ=-,n=λ,则OP mOA nOB =+u u u r u u u r u u u r 且m+n=1. (2)由m 、n 满足m+n=1?A 、B 、P 三点共线. 若OP mOA nOB =+u u u r u u u r u u u r 且m+n=1,则(1)OP mOA m OB =+-u u u r u u u r u u u r . 则()OP OB m OA OB -=-u u u r u u u r u u u r u u u r ,即BP mBA =u u u r u u u r . ∴BP u u u r 与BA u u u r 共线,∴A 、B 、P 三点共线. 由(1)(2)可知,原命题是成立的. 【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一. 举一反三: 【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-u u u r , 12BC e e =+u u u r ,1269CD e e =-u u u r ,求证:A ,C ,D 三点共线. 【解析】 因为1212121(4)()233AC AB BC e e e e e e CD =+=-++=-=u u u r u u u r u u u r u u u r ,所以AC u u u r 与CD uuu r 共线.

平面向量基本定理

一:学习目标:1:理解掌握平面向量基本定理;2:能用平面向量基本定理进行向量的合成与分解。 二:重点难点:平面向量基本定理 三:知识链接:1:向量的加法和减法运算: (1) 平行四边形法则的实施步骤: 先把两个向量的起点 ,然后 作平行四边形, 即为两个向量的和向量。 (2) 三角形法则的实施步骤: 先把两个向量首尾 ,由第一个向量的 指向第二个向量的 的向量即为两个向量的和向量。 减法可转化为加法运算。 2:向量的数乘运算:设λ为实数,则 λa 表示与a 的向量。 (1)当λ>0时,λ与方向 , = (2)当λ<0时,λ与方向 , = (3)当λ=0时,λ= 3:向量共线定理:非零向量与向量共线,当且仅当有唯一一个实数λ使 四:学习过程 : 1:如图,在平面内任取一点O ,作=1e ,=2e ,=, 如何将 a 用1e 和2e 表示出来?(提示:用平行四边形法则将a 在1e 和2e 的方向上分解) A 2:讨论探究:是否平面内任一向量都能用 1e 和 2e 表示? 3:平面向量基本定理的内容: ; 不共线的向量1e 和2e 称为 。讨论:同一平面的基底是否唯一? 4:设=,=,则 为和的夹角,记为θ,范围是 ;当θ=00 时, ;当θ=1800时, ;当0,记作 。 讨论探究: 作出下列向量的夹角 (1) (2) 1.把一个向量分解为两个互相垂直的向量,叫做把向量 2.对于平面上的一个向量a ,有且只有一对实数x,y,使得a xi y j =+,我们把有序实数对),(y x 叫做 向量a 的坐标,记作 . 比如力的分解, 6题例分析:(1):已知向量1e 和2e ,求作向量-2.51e +32e (提示:利用平行四边形法则合成) 变式练习:在平面直角坐标系中,1e 和2e 分别是x 轴和y =6, ∠AOX=600 ,试用1e 和2e 表示 提示:将向1e ,2e 的方向上分解,把两个分向量用1λ1e 和 2λ2e 表示出来,关键是求1λ和2λ (2):已知ABCDEF 是正六边形,且=,=,试用,表示 (提示:画出图形,用平行四边形法则或三角形法则进行转化) x A y O 1 e 2 e

相关文档
相关文档 最新文档