文档库 最新最全的文档下载
当前位置:文档库 › 谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明(考研中的证明题)
谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明

引言

众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学

应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述.

1罗尔()

Rolle中值定理

如果函数()x

f满足条件:()1在闭区间[]b a,上连续;()2在开区间()b a,内可导;(3)()()b f

a

f=,则在()b a,内至少存在一点ζ ,使得()0

'=

ζ

f

罗尔中值定理的几何意义:如果连续光滑曲线()x

f

y=在点B

A,

处的纵坐标相等,那么,在弧 ?

AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1,

注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,

使得()0'=ζf . 这就是说定理的

条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间

()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a

b a f b f f --=ζ'

拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ?

AB 上至少有一点C ,曲线在C 点的切线平行于弦

AB . 如图2,

从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中

值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理

教材证法

证明 作辅助函数 ()()()()

f b f a F x f x x b a

-=-

-

显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使()()()()0''=---

=a b a f b f f F ζζ.即()()()a

b a f b f f --=

ζ'. 用作差法引入辅助函数法

证明 作辅助函数 ()()()()()()??

???

?---+

-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,

()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使

得()()()()0''=---

=a b a f b f f ζζ?,即 ()()()a

b a f b f f --=ζ'

推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,

即有:()()a b a f b f K K AB OT --=

=,OT 的直线方程为:()()x a

b a f b f y --=,于是引入的辅助函数为:()()()()x a

b a f b f x f x ---=?. (证明略) 推广2 如图4过点()O a ,作直线''B A ∥AB ,直线''B A 的方程为:

()()()a x a

b a f b f y ---=

,由()x f 与直线函''B A 数之差构成辅助函数()x ?,于是有:()()()()()a x a b a f b f x f x ----=?. (证明略) 推广3 如图5过点作()O b ,直线''B A ∥AB ,直''B A 线的方程为

()()()b x a

b a f b f y ---=

,由()x f 与直线A B ''函数之差构成辅助函数()x ?,于是有:()()()()()b x a

b a f b f x f x ----

=?. 事实上,可过y 轴上任已知点

()m O ,作//B A ∥AB 得直线为

()()m x a

b a f b f y +--=,从而利用()x f 与直

线的''B A 函数之差构成满足罗尔中值

定理的辅助函数()x ?都可以用来证明拉格朗日中值定理. 因m 是任

意实数,显然,这样的辅助函数有无多个.

用对称法引入辅助函数法

在第二种方法中引入的无数个辅助函数中关于x 轴的对称函数也有无数个,显然这些函数也都可以用来证明拉格朗日中值定理.从几何意义上看,上面的辅助函数是用曲线函数()x f 减去直线函数,反过来,用直线函数减曲线函数()x f ,即可得与之对称的辅助函数如下: ⑴ ()()()()()()x f a x a b a f b f a f x -??

???

?---+

=? ⑵ ()()()()x f x a b a f b f x ---=?

⑶ ()()()()()x f a x a b a f b f x ----=? ⑷ ()()()()()x f b x a

b a f b f x ----=

? 等等.这类能用来证明拉格朗日中值定理的辅助函数显然也有无数个. 这里仅以⑵为例给出拉格朗日中值定理的证明.

证明 显然,函数()x ?满足条件:()1在闭区间[]b a ,上连续;()2在

开区间()b a ,内可导;()3()()()()a

b a bf b af b a --=

=??.由罗尔中值定理知,

至少存在一点()b a ,∈ζ,使得()()()()0''=---=ζζ?f a

b a f b f ,从而有()()()a

b a f b f f --=ζ',显然可用其它辅助函数作类似的证明. 转轴法

由拉格朗日中值定理的几何图形可以看出,若把坐标系xoy 逆时针旋转适当的角度α,得新直角坐标系XOY ,若OX 平行于弦AB ,则在新的坐标系下()x f 满足罗尔中值定理,由此得拉格朗日中值定理的证明.

证明 作转轴变换ααsin cos Y X x -=,ααcos sin Y X y +=,为求出

α,解出Y X ,得

()()x X x f x y x X =+=+=ααααsin cos sin cos ① ()()x Y x f x y x Y =+-=+-=ααααcos sin cos sin ② 由()()b Y a Y =得 ()()ααααcos sin cos sin b f b a f a +-=+-,从而

()()a

b a f b f --=

αtan ,取α满足上式即可.由()x f 在闭区间[]b a ,上连续,在

开区间()b a ,内可导,知()x Y 在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()b Y a Y =,因此,由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()()0cos sin '=+-=αζαζf Y ,即()()()a

b a f b f f --==αζtan ' 用迭加法引入辅助函数法

让()x f 迭加一个含待顶系数的一次函数m kx y +=,例如令

()()()m kx x f x +-=?或()()m kx x f x ++-=?,通过使()()b a ??=,确定出

m k ,,即可得到所需的辅助函数.

例如由 ()()()m kx x f x +-=?,令()()b a ??=

得()()()()m kb b f m ka a f +-=+-,从而()()a

b a f b f k --=

,而m 可取任意实数,这样我们就得到了辅助函数()()()m x a

b a f b f x ---=?,由m 的任意性易知迭加法可构造出无数个辅助函数,这些函数都可用于证明拉格朗日中值定理.

用行列式引入辅助函数法

证明 构造一个含()x f 且满足罗尔中值定理的函数()x ?,关键是

满足()()b a ??=.我们从行列式的性质想到行列式()()()1

11

x f x a

f a b

f b 的值在,x a x b ==时恰恰均为0,因此可设易证()()()()1

11

x

f x x a

f a b

f b ?=,展开得 ()()()()()()()x f b x bf a af x af b f a x bf x ?=++---.

因为()x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,所以()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()0a b ??==,所以由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()0'=ζ?. 因为

()()()()()0''=---=ζζ?f b a b f a f

即: ()()()a

b a f b f f --=ζ' 数形相结合法

引理 在平面直角坐标系中,已知ABC ?三个顶点的坐标分别为

()(),A a f a ,()(),B b f b ,()(),C c f c ,

则ABC ?面积为()()()

11

12

ABC a

f a S b f b a c

f c ?=, 这一引理的证明在这里我们不做介绍,下面我们利用这一引理对拉格朗日中值定理作出一种新的证明. 这种方法是将数形相结合,考虑实际背景刻意构造函数使之满足罗尔中值定理的条件.如图, 设

()(),c f c 是直线AB 与()y f x =从A 点开始的第一个交点,则构造

()()

()()

2

11

14

1a

f a x c f c x f x ?=

, 易验证()x ?满足罗尔中值定理的条件:在闭区间[],a c 上连续,在开区间(),a c 内可导,而且()()b a ??=,则至少存在一点()b a ,∈ζ,使()/0?ζ=,即:

()()()()()()

01111111'=ζζζ

f c f c a f a f c f c a f a 但是()

()()

1101a

f a c

f c f ζζ≠,这是因为,如果 ()

()()

1101a f a c f c f ζ

ζ=, 则

()()()()

f f c f c f a c c a

ζζ--=--,这样使得()(),f ζζ成为直线AB 与()y f x =

从A 点的第一个交点,与已知矛盾).

故()

()()

0111=ζζ

f c f c

a f a

,即()()()()()a

c a f c f a b a f b f f --=--=ζ'. 若只从满足罗尔中值定理的要求出发,我们可以摈弃许多限制条件,完全可以构造

()()

()()

111a

f a x b

f b x

f x ?=来解决问题,从而使形式更简洁,而且启发我们做

进一步的推广:可构造()()()()()()

()

111g a f a x g b f b g x f x ?=来证明柯西中值定理.

区间套定理证法

证明 将区间[],I a b =二等分,设分点为1ζ,作直线1x ζ=,它与曲线()y f x = 相交于1M ,过1M 作直线11L M ∥弦b a M M . 此时,有如下两种可能:

⑴ 若直线11M L 与曲线()y f x =仅有一个交点1M ,则曲线必在直线11M L 的一侧.否则,直线11M L 不平行于直线a b M M . 由于曲线()y f x =在点1M 处有切线,根据曲线上一点切线的定义,直线11M L 就是曲线()y f x =在点1M 处的切线,从而()()()a

b a f b f f --=

1ζ.由作法知,

1ζ在区间(),a b 内部,取ζζ=1

于是有 ()()()a

b a f b f f --=

ζ

⑵ 若直线11M L 与曲线()y f x =还有除

1M 外的其他交点,设()111,N x y 为另外一个交

点,这时选取以11,x ξ为端点的区间,记作

[]

111,I a b =,有

1,11

2

b a l I b a -?-<

,

()()()()

1111f b f a f b f a b a b a

--=

--,把1I 作为新的“选用区间”,将1I 二等分,并进行与上面同样的讨论,则要么得到所要求的点ζ,要么又得到一个新“选用区间”2I .如此下去,有且只有如下两种情形中的一种发生:

(a) 在逐次等分“选用区间”的过程中,遇到某一个分点k ζ,作直线k x ζ=它与曲线()y f x =交于k M ,过点k M 作直线k k L M ∥弦b MM , 它与曲线()y f x =只有一个交点k M ,此时取ζζ=k 即为所求.

(b) 在逐次等分“选用区间”的过程中,遇不到上述那种点,则得一闭区间序列{n I },满足:

① 12I I I ??? []n n n b a I ,=

② ()02

n n n b a

b a n --<

→→∞ ③

()()()()

n n n n f b f a f b f a b a b a

--=

-- 由①②知,{n I }构成区间套,根据区间套定理,存在唯一的一点

() 3,2,1=∈n I n ζ,此点ζ即为所求. 事实上ζ==∞

→∞

→n n n n b a lim lim ,()f ξ存

在()()

()ζf a b a f b f n n n n n =--∞

→lim ,由③lim n →∞()()()()n n n n f b f a f b f a b a b a

--=

--,所以()()()a

b a f b f f --=

ζ,从“选用区间”的取法可知,ζ确在(),a b 的内部.

旋转变换法

证明 引入坐标旋转变换A : cos sin x X Y αα=- ⑴ ααcos sin Y X y += ⑵

因为 22cos sin cos sin 10sin cos ααααα

α

-?==+=≠

所以A 有逆变换/A :()()cos sin cos sin X x y x f x X x αααα=+=+= ⑶

()()sin cos sin cos Y x y x f x Y x αααα=-+=-+= ⑷ 由于()x f 满足条件: ()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导,因此⑷式中函数()Y x 在闭区间[]b a ,上连续,在开区间()b a ,内可导.为使()Y x 满足罗尔中值定理的第三个条件,只要适当选取旋转角α,使()()Y a Y b =, 即()()sin cos sin cos a f a b f b αααα-+=-+,也即

()()

tan f b f a b a

α-=

-.

这样,函数()Y x 就满足了罗尔中值定理的全部条件,从而至少存在一点()b a <<ζζ,使()()0cos sin =+=αζαζf Y 即()αζtan =f . 由于所选取旋转角α满足()()a b a f b f --=

αtan ,所以()()()a

b a f b f f --=ζ.

结论

本论文仅是对拉格朗日中值定理的证明方法进行了一些归纳总结其中还有很多方法是我没有想到的,而且里面还有很多不足之处需要进一步的修改与补充. 通过这篇论文我只是想让人们明白数学并不是纯粹的数字游戏,里面包含了很多深奥的内容. 而且更重要的是我们应该学会去思考,学会凡是多问几个为什么,不要让自己仅仅局限于课本上的内容,要开动脑筋学会举一反三,不要单纯为了学习而学习,让自己做知识的主人!

总之,数学的发展并非是无可置疑的,也并非是反驳的复杂过程,全面的思考问题有助于我们思维能力的提高,也有助于创新意识的培养.

参考文献

[1] 华东师范大学数学系. 数学分析(上册)(第二版)[M].北京:

高等教育出版社.1991:153-161

[2] 吉林大学数学系. 数学分析(上册)[M].北京:人民教育出版社.1979:194-196

[3] 同济大学应用数学系. 高等数学(第一册)[M].北京:高等教

育出版社(第五版).2004:143-153

[4] 周性伟,刘立民. 数学分析[M].天津:南开大学出版社.1986:

113-124

[5] 林源渠,方企勤. 数学分析解题指南[M].北京:北京大学出版社.2003:58-67

[6] 孙清华等. 数学分析内容、方法与技巧(上)[M].武汉:华中

科技大学出版社.2003:98-106

[7] 洪毅. 数学分析(上册)[M].广州:华南理工大学出版社.2001:111-113

[8] 党宇飞. 促使思维教学进入数学课堂的几点作法[J].上海:数

学通报.2001,1:15-18

[9] 王爱云. 高等数学课程建设和教学改革研究与实践[J].西安:

数学通报.2002,2:84-88

[10] 谢惠民等. 数学分析习题课讲义[M].北京:高等教育出版

社.2003:126-135

[11] 刘玉莲,杨奎元等. 数学分析讲义学习指导书(上册)[M].北

京:高等教出版社.1994:98-112

[12] 北京大学数学力学系. 高等代数. 北京:人民教育出版社. 1978:124-135

[13] 裴礼文. 数学分析中的典型问题与方法[M].北京:高等教育出

版社.1993:102-110

[14] 郑琉信.数学方法论[M].南京:广西教育出版社.1996:112-123 [15] 陈传璋等. 数学分析(上册)[M].北京:人民教育出版社.1983:87-92

[16] 李成章,黄玉民. 数学分析(上)[M].北京:科学出版社.1995:77-86

附 录

柯西中值定理

若 ⑴ 函数()f x 与()g x 都在闭区间[]b a ,上连续; ⑵ ()x f '与()x g '在开区间()b a ,内可导; ⑶ ()x f ' 与()x g '在()b a ,内不同时为零; ⑷ ()()g a g b ≠,

则在()b a ,内至少存在一点ζ,使得()()

()()a b a f b f g f --=ζζ''.

区间套定理

若[]{},n n a b 是一个区间套,则存在唯一一点ζ,使得

[],n n a b ζ∈,1,2,n =

或 n n a b ζ≤≤,1,2,n =

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

拉格朗日中值定理在导数中的应用

拉格朗日中值定理在导数中的应用 拉格朗日中值定理 如函数)(x f 满足如下条件: ①)(x f 在区间[a,b]上连续; ②)(x f 在开区间(a,b)上可导 则在(a,b)内至少存在一个点ξ,使得a b a f b f f --=)()()('ξ 题型设计 题型一、证明a x x f >)(或a x x f <)(成立,0>x 例题:设函数x x e e x f --=)( (1)证明:2)('≥x f ; (2)证明:若对所有0≥x ,都有ax x f ≥)(,则a 的取值范围是]2,(-∞。

题型二、)()2 (2)()(a b b a g b g a g -<+-+λ,)(a b > 例题:已知函数x x x f -+=)1ln()(,x x x g ln )(=。 (1)求函数)(x f 的最大值; (2)设a b a 40<<<,证明:2ln )()2 ( 2)()(a b b a g b g a g -<+-+

题型三、证明|)(||)()(|2121x x x f x f ->-λ 例题:已知函数x a x x x f ln 2)(2 ++=,对任意两个正数21,x x ,证明: (1)当0≤a 时,)2(2)()(2121x x f x f x f +>+; (2)当4≤a 时,|||)(')('|2121x x x f x f ->-

例题:设函数x x x f cos 2sin )(+=。 (1)求)(x f 的单调区间; (2)如果对任何0≥x ,都有ax x f ≤)(,求a 的取值范围。

题型四、证明0)(>x f ,)(a x >成立,其中0)(=a f 例题:设0≥a ,)0(ln 2ln 1)(2 >+--=x x a x x x f 。 (1)令)(')(x xf x F =,讨论)(x F 在),0(+∞内的单调性并求其极值; (2)求证:当1>x 时,恒有1ln 2ln 2+->x a x x 。

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

拉格朗日中值定理在高考题 中的妙用

拉格朗日中值定理在高考题中的妙用 一.拉格朗日中值定理[1] 拉格朗日中值定理:若函数满足如下条件: (i)在闭区间上连续; (ii)在开区间内可导; 则在内至少存在一点,使得. 几何意义: 在满足定理条件的曲线上至少存在一点,该曲线在该点处的切线平行于曲线两端的连线(如图) 二.求割线斜率大小-----------几何意义的利用 由拉格朗日中值几何意义可知:曲线上两点的割线斜率,可以转化为曲线上切线的斜率.即连续函数上任意两点的连线总与某条切线平行.下面通过下题具体分析. 例1:(2011年福建省质检理19题)已知函数 (Ⅰ)求的单调递增区间; (Ⅱ)设问是否存在实数,使得函数上任意不同两点连线的斜率都不小于?若存在,求的取值范围;若不存在,说明理由. 解(Ⅰ)略(Ⅱ)当时,,假设存在实数,使得的图象上任意不同两点连线的斜率都不小于,即对任意,都有即求任意两点割线斜率的大小,由中值定理知存在,有转为求切线斜率的大小.即在上恒成立.(以下同

参考答案) 评析:该题若用初等方法解决,构造函数同是本题的难点和突破口.将转化为转而考查函数,学生不是很容易想到,但若利用拉格朗日中值定理,则只需求二次导函数在所给区间的最小值即可,学生易接受. 二.利用拉格朗日中值定理证最值 (1)证或 -------------即证与的大小关系 例2:(2009年辽宁卷理21题) 已知函数 (Ⅰ)讨论函数的单调性; (Ⅱ)证明:若,则对任意,,有. (Ⅰ)略;(Ⅱ)要证成立,即证. 令,则.由于,所以.从而在恒成立.也即.又,,故.则,即,也即. 评注:这道题(Ⅱ)小题用初等方法做考虑函数.为什么考虑函数很多考生一下子不易想到.而且的放缩也不易想到. (2)、证明或成立(其中,) ----------即证或 例3:(2007年高考全国卷I第20题) 设函数.[2] (Ⅰ)证明:的导数; (Ⅱ)证明:若对所有,都有,则的取值范围是. (Ⅰ)略.(Ⅱ)证明:(i)当时,对任意的,都有 (ii)当时,问题即转化为对所有恒成立.令,由拉格朗日中值定理知内至少存在一点(从而),使得,即,由于,故在上是增函数,让得,所以的取值范围是.

拉格朗日中值定理

一拉格朗日中值定理 拉格朗日中值定理,又被称为有限增量定理,是微积分中的一个基本定理。拉格朗日中值公式的形式其实就是泰勒公式的一阶展开式的形式。在现实应用当中,拉格朗日中值定有着很重要的作用。拉格朗日中值定理是所有的微分中值定理当中使用最为普遍的定理。 拉格朗日中值定理的形成和发展过程都显示出了数学当中的一个定理的发展是一个推翻旧,出现创新的一个进程。发现一些新的简单的定理去替代旧的复杂的定理,就是由初级走向高级。 用现代的语言来描述,在一个自变量x从x变为x+1的过程中,如果函数f(x)本身就是一个极限值,那么函数f(x+1)的值也应该是一个极限值,其值就应该和f(x)的值近似相等,即 这就是非常著名的费马定律,当一个函数在x=a处可以取得极值,并且函数是可导函数,则。著名学者费马再给出上述定理时,此时的微积分研究理论正处于初始阶段,并没有很成熟的概念,没有对函数是否连续或者可导作出限制,因此在现代微积分理论成熟阶段这种说法就显得有些漏洞。 在所有的微分中值定理中,最重要的定理就是拉格朗日中值定理。最初的拉格朗日中值定理和现在成熟的拉格朗日中值定理是不一样的,最初的定理是函数f(x)在闭区间[a,b]任取两点,并且函数在此闭区间是连续的,的 最大值为A,最小值为B,则的值必须是A和B之间的一个值。这是拉格朗日定理最初的证明。 下述就是拉格朗日中值定理所要求满足的条件。 如果存在一个函数满足下面两个条件,(1)函数f 在闭区间[a,b]上连续;(2)函数f 在开区间(a,b)可导;那么这个函数在此开区间至少存在着一点,使得. 拉格朗日中值定理是导数的一个延伸概念,在导数运算中是的很基本概念。 例1:函数

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

总结拉格朗日中值定理的应用

总结拉格朗日中值定 理的应用

总结拉格朗日中值定理的应用 以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,尤其是拉格朗日中值定理。他建立了函数值与导数值之间的定量联系,因而可用中值定理通过导数研究函数的性态。中值定理的主要作用在于理论分析和证明,例如为利用导数判断函数单调性、取极值、凹凸性、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,我们需要对其能够熟练的应用,这对高等数学的学习有着极大的意义! 拉格朗日中值定理的应用主要有以下几个方面:利用拉格朗日中值定理证明(不)等式、利用拉格朗日中值定理求极限、研究函数在区间上的性质、估值问题、证明级数收敛。首先我想介绍几种关于如何构造辅助函数的方法。 凑导数法。:这种方法主要是把要证明的结论变形为罗尔定理的结论形式, 凑出适当的函数做为辅助函数,即将要证的结论中的换成X,变形后观察法凑成F’(X),由此求出辅助函数F(x).如例1. 常数值法:在构造函数时;若表达式关于端点处的函数值具有对称性,通 常用常数k值法来求构造辅助函数,这种方法一般选取所证等式中含的部分

作为k,即使常数部分分离出来并令其为k,恒等变形使等式一端为a与f(a)构成的代数式,另一端为b与.f(b)构成的代数式,将所证式中的端点值(a或b)改为变量x移项即为辅助函数f(x),再用中值定理或待定系数法等方法确定k,一般来说,当问题涉及高阶导数时,往往考虑多次运用中值定理,更多时要考虑用泰勒公式.如例3. 倒推法::这种方法证明方法是欲证的结论出发,借助于逻辑关系导出已知的条件和结论.如例4。

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

拉格朗日插值定理证明

拉格朗日插值定理证明 作者:田茂(tianmao999@https://www.wendangku.net/doc/6210253968.html, ) 已知: 110111212 211()1...()1...*......................()1...N N N N N N N f x a x x f x a x x f x a x x ----??????????????????=???????????????? ??(1) 则有: 01111100()1*....()()() N N N N i i j i i j j i a a f x x x a x a f x a a ----==≠????????=???????? -=-∑∏ (2) 证明过程如下: 由: ()()0i i f x a f a =-=(3) 可知: ()()()()i i f x f a x a g x -=-(4) 即有: ()()mod()i i f x f a x a ≡-(5) 由中国余数定理(CRT )可知: 1()()*()*()n i i i i f x N x M x f a ==∑(6) 式(6)中,()i M x 满足: 1()()n i j j j i M x x a =≠=-∏(7) ()i N x 满足: ()()()()1i i i i N x M x n x x a +-=(8) 即有:

()()1mod ()i i i N x M x x a ≡-(9) 由(7)得: ()()()111()() ()mod()n i j j j i n i i j j j i n i j i j j i M x x a x a a a a a x a =≠=≠=≠=-=-+-≡--∏∏∏(10) 如果要满足式(9),由(10)可知,()i N x 为: ()11 ()i n i j j j i N x a a =≠=-∏(11) 将(7)和(11)代入(6)可得: ()1 1111100()()*()*() 1*()*()()()() n i i i i n n j i n i j i j j i j j i N N i i j i i j j i f x N x M x f a x a f a a a x a f x a a ===≠=≠--==≠==---=-∑∑∏∏∑∏(12) 命题得证。

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

罗尔定理与拉格朗日定理的证明与应用

罗尔定理与拉格朗日定理的证明与应用

单位:旅游系 专业:酒店管理 姓名:王姐 学号:1414061039 【摘要】罗尔定理与拉格朗日定理是是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断导数的整体性质的工具。拉格朗日定理存在于多个科学领域之中,其中微积分中的拉格朗日定理即拉格朗日中值定理,又称拉式定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的形式。它在初等数学中有着重要作用,也是一个基础性定理。在许多方面它都有重要的作用 ,在进行一些公式推导与定理证明中都有很多应用。 【关键词】罗尔定理、拉格朗日定理、重要应用。 引言 拉格朗日定理是高等数学的基础,同时也是一个基础性的定理,在高等数学中有着重要作用,要学习和掌握它的证明方法。 罗尔定理:如果函数()f x 满足条件:○ 1在闭区间[,]a b 上连续;○2在开区间(,)a b 内可导;○ 3在区间两个端点的函数值相等,即()()f a f b =,(,)a b ξ∈,使得'()0f ξ=。 罗尔定理的证明:因为函数()f x 在闭区间[,]a b 上连续,所以它在[,]a b 上必能取得最大值M 和最小值m 。 (1)如果M m =,则()f x 在[,]a b 上恒等于常数M ,因此,在整个区间(,)a b 内恒有 '()0f x =,所以,(,)a b 内每一点都可取作ξ,此时定理显然成立。 (2)如果m M <,因()()f a f b =,则数M 与m 中至少有一个不等于端点的函数值()f a ,设()m f a ≠,这就是说,在(,)a b 内至少有一点ξ,使得()f M ξ=。 下面证明'()0f ξ=。 由于()f M ξ=是最大值,所以不论x ?为正或负,恒有()()0f x f x ξ+?-ξ≤?, (,)x a b ξ+?∈。 当0x ?>时,()()0f x f x ξ+?-ξ≤?,有已知条件'()f ξ存在可知,

拉格朗日中值定理的应用

拉格朗日中值定理的 应用

总结拉格朗日中值定理的应用 以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,尤其是拉格朗日中值定理。他建立了函数值与导数值之间的定量联系,因而可用中值定理通过导数研究函数的性态。中值定理的主要作用在于理论分析和证明,例如为利用导数判断函数单调性、取极值、凹凸性、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,我们需要对其能够熟练的应用,这对高等数学的学习有着极大的意义! 拉格朗日中值定理的应用主要有以下几个方面:利用拉格朗日中值定理证明(不)等式、利用拉格朗日中值定理求极限、研究函数在区间上的性质、估值问题、证明级数收敛。首先我想介绍几种关于如何构造辅助函数的方法。 凑导数法。:这种方法主要是把要证明的结论变形为罗尔定理的结论形式, 凑出适当的函数做为辅助函数,即将要证的结论中的换成X,变形后观察法凑成F’(X),由此求出辅助函数F(x).如例1. 常数值法:在构造函数时;若表达式关于端点处的函数值具有对称性,通 常用常数k值法来求构造辅助函数,这种方法一般选取所证等式中含的部分

作为k,即使常数部分分离出来并令其为k,恒等变形使等式一端为a与f(a)构成的代数式,另一端为b与.f(b)构成的代数式,将所证式中的端点值(a或b)改为变量x移项即为辅助函数f(x),再用中值定理或待定系数法等方法确定k,一般来说,当问题涉及高阶导数时,往往考虑多次运用中值定理,更多时要考虑用泰勒公式.如例3. 倒推法::这种方法证明方法是欲证的结论出发,借助于逻辑关系导出已知的条件和结论.如例4。

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔() Rolle中值定理 如果函数()x f满足条件:()1在闭区间[]b a,上连续;()2在开区间()b a,内可导;(3)()()b f a f=,则在()b a,内至少存在一点ζ ,使得()0 '= ζ f 罗尔中值定理的几何意义:如果连续光滑曲线()x f y=在点B A,

处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ, 使得()0'=ζf . 这就是说定理的 条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理 若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间 ()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --=ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦 AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中

高中数学基本定理证明

1三角函数的定义证明. 已知锐角△ABC中,AB=c,AC=b,BC=a,利用三角函数的定义证明:c=acosB+bcosA解:作CD⊥AB于点D 在Rt△BCD中,由cosB=BD/BC,得BD=acosB,在Rt△ACD中,由cosA=AD/AC,得AD=bcosA,所以c=AB=BD+AD=acosB+bcosA 逐步提示: 1、根据待证明的条件中存在三角函数,而题目本身图形为锐角三角形,所以要在原图形中通过添加辅助线来构造直角三角形。 2、根据求【c的表达式,既是求AB的三角函数表达式】,因此添加辅助线时考虑【将AB 线段变为直角三角形的边】,可以作【CD⊥AB 于点D,】接下来考虑如何在在直角三角形中利用直角三角形三角函数来求解边角关系。 3、接下来分别在Rt△ACD和Rt△BCD中利用三角函数来表示AD的长度向待证靠近 2点P为△ABC内任意一点,求证点P到△ABC距离和为定值点P为△ABC外时,上述结论是否成立,若成立,请证明。若不成立h1,h2,h3与上述定值间有何关系【设点p 到AB,BC,CA三边距离为h1,h2,h3】 证明:连接PA、PB、PC,过C作AB上的高AD,交AB于G。 过P作AB、BC、CA的重线交AB、BC、CA于D、E、F 三角形ABC面积=AB*CG/2 三角形ABC面积=三角形ABP+BCP+CAP面积 =AB*PD/2+BC*PE/2+CA*PF/2 =AB(PD+PE+PF)/2 故:AB*CG/2=AB*(PD+PE+PF)/2 CG=PD+PE+PF 即:点P到△ABC距离和为三角形的高,是定值。 (2) 若P在三角形外,不妨设h1>h3,h2>h3,则有: h1+h2-h3=三角形边上的高 3棱长为的正四面体内任意一点到各面距离之和为定值,则这个定值等于多少? 简证如下: 设M为正四面体P-ABC内任一点, M到面ABC,面PAB,面PAC,面PBC的距离分别为h1,h2,h3,h4. 由于四个面面积相等, 则VP-ABC=VM-ABC+VM-PAB+VM-PAC+VM-PBC

高中数学竞赛平面几何定理证明大全

Gerrald 加油坚持住 Gerrald 加油坚持住 Gerrald 加油坚持住 莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构成 一个正三角形。 設△ABC中的∠B,∠C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是△BPC的內心,因為BD, CD正好是∠CBP, ∠BCP的角平分线。 莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使△DEF是个正三角形,再证AE、AF正好是∠BAC的三等分线就行了 为此,先把DP连起來,在CP, BP上分別取两点E, F使∠EDP=∠FDP=30°,于是就得到一个三角形△DEF。为什么它是一个正三角形呢?因为D是△BPC的內心,所以DP是∠BPC的角平分线,即∠DPE=∠DPF,由作图知∠EDP=∠FDP =30°,在△DPE和△DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以△DPE≌△DPF。于是DE=DF,即△DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60°,所以它当然是个正三角形。 接下來,我们的目标就是希望能证明△DEF真的是莫利三角形,亦即AE, AF 的确会三等分∠BAC。

如图2所示,在AB, AC上各取一点G,H,使得BG=BD, CH=CD,把G、F、E、H各点依次连起來,根据△BFD≌△BFG,△CED≌△CEH,我们就得到GF =FD=FE=ED=EH。 下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为∠GAF,∠FAE,∠EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。 为了证明G,H,E,F,A共圓,必须证明∠FGE=∠FHE=∠A/3。 看图2,首先我们注意到△GFE是个等腰三角形,∠GFE是它的顶角,如果这个角能求出來,其底角∠FGE也就能求出来了。 △PFE也是一个等腰三角形,这是因为△PDF≌△PDE,(PD是公用边,∠DPF=∠DPE,∠PDF=∠PDE=30°),所以PF=PE。等腰三角形△PFE的顶角大小为: ∠FPE=π-2/3(∠ABC+∠ACB)=π-2/3(π-∠BAC)=π/3+2/3∠BAC (1) ∠BFD=∠PDF+∠DPF=π/6+1/2∠FPE=π/6+π/6+1/3∠BAC=π/3+1/3∠BAC (2) ∠GFE=2π-∠EFD-2∠BFD=2π-π/3-2π/3-2∠BAC/3=π-2/3∠BAC (3) 最后得到:∠FGE=∠FEG=1/2(π-∠GFE)=1/3∠BAC...(4)同理可证:∠FHE=∠HFE=1/3∠BAC (5) 至此可知G,H,E,F,A五点共圓。 因GF=FE=EH,所以∠GAF=∠FAE=∠EAH=1/3∠BAC (6) 即AE和AF恰好是∠BAC的三等分线,所以△DEF是莫利三角形。 AB是圆的一条弦,中点记为S,圆心为O,过S作任意两条弦CD、EF,分别交圆于C、D、E、F,连接CF,ED分别交AB于点M、N,求证:MS=NS。

(整理)拉格朗日中值定理的几种特殊证法

届学士学位毕业论文 关于拉格朗日中值定理的几种特殊证法 学号: 姓名: 班级: 指导教师: 专业: 系别: 完成时间:年月

学生诚信承诺书 本人郑重声明:所呈交的论文《关于拉格朗日中值定理的几种特殊证法》是我个人在导师王建珍指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得长治学院或其他教育机构的学位或证书所使用过的材料。所有合作者对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:日期: 指导教师声明书 本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性。 指导教师签名:时间:

摘要 拉格朗日中值定理在高等代数和数学分析的一些理论推导中起着重要作用,本论文为了更准确的理解拉格朗日中值定理,介绍了其几种特殊的证明方法.首先本文从分析和几何的角度构造辅助函数对拉格朗日中值定理进行了证明,其中在分析法构造辅助函数中应用了推理法、原函数法、行列式法及弦倾角法,在几何法构造辅助函数中应用了作差构造法、面积构造法和旋转坐标轴法;其次,应用了区间套定理证明法和巴拿赫不动点定理证明法对拉格朗日中值定理进行了证明;最后,本文为能将拉格朗日中值定理表述更为深刻,还将其应用到求极限,证明函数性态等具体问题中. 关键词:拉格朗日中值定理;区间套定理;巴拿赫不动点定理

相关文档
相关文档 最新文档