文档库 最新最全的文档下载
当前位置:文档库 › 柯西与拉格朗日中值定理的多种证明方法

柯西与拉格朗日中值定理的多种证明方法

柯西与拉格朗日中值定理的多种证明方法
柯西与拉格朗日中值定理的多种证明方法

微分中值定理的进一步探讨

□ 孙 莹

摘要:

微分中指定理中的 C auchy 中值定理与Lagrange 中值定理是数学分析学习内容的重中之重,其具有较强的理论性,其揭示函数与其导数之间的关系,在知识结构和思想体系中建立起应用导数进一步研究函数性质的桥梁。我们在处理数学证明题中会经常用到这两个定理,但是课本中给出的证明方法单一而且独特,较难掌握,为弥补此不足之处,本课题将帮助大家多角度地了解微分中值定理的证明方法,以便更深刻地理解Cauchy 中值定理与Lagrange 中值定理,学会用多种方法处理同一问题的思想。

关键词: C auchy 中值定理;Lagrange 中值定理;常数k 法;行列式法;坐标旋转法

文章一开始先给出Roller 中值定理,因为Cauchy 中值定理和Lagrange 中值定理的多种证明过程都会用到Roller 中值定理的结论。然后给出北师大版的数学分析上册书中的Cauchy 中值定理和Lagrange 中值定理及其证明过程,目的在于让读者发现其与其它证明方法的联系。

定理1 (Roller 中值定理) 若()f x 满足如下条件:

()i 在[,]a b 上都连续;

()ii 在(,)a b 上都可导;

()iii )()(b f a f =,

则在(,)a b 内至少存在一点ξ,使得0)('=ξf 。

定理2 (Cauchy 中值定理)[1] ()f x ,()g x 满足以下几个条件:

()i 在[,]a b 上都连续;

()ii 在(,)a b 上都可导

()iii )('x f 和)('

x g 不同时为零

)(iv )()(b g a g ≠

则存在ξ(,),a b ∈使得 ''()()()()()()

f f b f a

g g b f a ξξ-=-。

证明: 作辅助函数

())()()()()()()()()(a g x g a g b g a f b f a f x f x F ----

-=

易见F(x) 在[,]a b 上满足罗尔定理条件,故存在ξ(,),a b ∈使得

0)()()()()()()('''=---

=ξξξg a g b g a f b f f F

因为0)('≠ξg (否则由上式可知0)('=ξf ),所以可把上式改写成

''()()()()()()

f f b f a

g g b f a ξξ-=- 证毕。

定理2 (Lagrange 中值定理) 若函数()f x 满足如下条件:

()i ()f x 在[,]a b 上都连续;

()ii ()f x 在(,)a b 上都可导,

则在(,)a b 内至少存在一点ξ,使得

'()()()f b f a f b a ξ-=

-。

证明:做辅助函数

)()()()()()(a x a b a f b f a f x f x F -----= 显然,0)()(==b F a F 且)(x F 在[,]a b 上满足罗尔定理的另外两个条件,故存在),(b a ∈ξ,使得

0)()()()(''=---

=a b a f b f f F ξξ

移项后即可得

'()()()f b f a f b a ξ-=

- 证毕。

接下来将给出Cauchy 中值定理和Lagrange 中值定理的其他证明方法:

证法一: 常数k 法

( Cauchy 中值定理 )利用常数k 的辅助函数来证明一个等式往往是通过待定系数法的思

路来完成证明的,其符合人的认识规律,易于理解。

将Cauchy 中值定理的结论改写成:

0)]()([)(')(')()(=--

-a g b g g f a f b f ξξ

由条件)()(b g a g ≠可知,一定存在一个常数k 使得:

0)]()([)()(=---a g b g k a f b f

成立。将上式中的常数b 换成变量x,可以得到辅助函数

)]()([)()()(a g x g k a f x f x ---=Φ < 1 >

经检验,)(x Φ在在[,]a b 上都连续,在(,)a b 上都可导,而且0)()(=Φ=Φb a 满足Roller

中值定理的所有条件,于是根据Roller 中值定理可知:至少),(b a ∈?ξ,使得0)('=Φξ即

0)()()('''=-=Φξξξkg f 由此解得

)()(''ξξg f k = 代入< 1 >中可得

0)]()([)(')(')()(=--

-a g b g g f a f b f ξξ

证毕。

( Lagrange 中值定理 )

将Lagrange 定理的结果改写成 0))((')()(=---a b f a f b f ξ

由a b ≠可知,必定存在一个常数k 使得:

0)()()(=---a b k a f b f < 2 >

将上式中的常数b 换成变量x ,得到辅助函数

)()()()(a x k a f x f x ---=Φ

经检验,)()()()(a x k a f x f x ---=Φ满足Roller 中值定理的全部条件: ()i 在[,]a b 上都连续, ()ii 在(,)a b 上都可导,且0)()(=Φ=Φb a 。于是根据Roller 中值定理可知,

至少存在一个ξ,使得0

)

('=

Φξ,

)

('

)

('=

-

=

Φk

ξ。

由此解得

)

('

)

('

ξ

ξ

g

f

k=

,代入< 2 >中可得

'

()()

()

f b f a

f

b a

ξ

-

=

-

证毕。

证法二:行列式法

不难发现Cauchy中值定理的结论有着独特的形式,

)

(

)

(a

f

b

f-和)

(

)

(a

g

b

g-与二阶行列

1

1

)

(

)

(

a

f

b

f

1

1

)

(

)

(

a

g

b

g

有着密切的联系,根据此关系可构造一个行列式作为辅助函数

1

)

(

)

(

1

)

(

)

(

1

)

(

)

(

)

(

a

f

a

f

b

g

b

f

x

g

x

f

x=

Φ

显然该函数满足Roller中值定理的所有条件。于是,根据Roller中值定理的结论可得,至少

少存在一个ξ,使得0

)

('=

Φξ,

1

)

(

)

(

1

)

(

)

(

)

('

)

('

)

('=

=

Φ

a

f

a

f

b

g

b

f

g

ξ

ξ

解得

)]

(

)

(

)[

('

)]

(

)

(

)[

('=

-

-

-a

f

b

f

g

a

g

b

g

ξ

因为

)

(

)

(a

f

b

f≠,且)

('ξ

f和)

('ξ

g不同时为零,所以上式可改写成

)

(

)

(

)

(

)

(

)

('

)

('

a

f

b

g

a

f

b

f

g

f

-

-

=

ξ

ξ

证毕。

不难发现Lagrange中值定理的结论有着独特的形式,

)

(

)

(a

f

b

f-和a

b-与二阶行列式

11)

()

(a f b f 和11a b 有着密切的联系,根据此关系可构造一个行列式作为辅助函数

1)(1

)(1

)()(a a f b b f x x f x =Φ

显然该函数满足Roller 中值定理的所有条件。于是,根据Roller 中值定理的结论可得,至少

少存在一个ξ,使得0)('=Φξ,

01)(1)(01)(')('==Φa a f b b f f ξξ

由此可得 0)]()([))(('=---a f b f a b f ξ

因为a b ≠,所以上式可以改写为

a b a f b f f --=

)()()('ξ

证毕。

证法三: 坐标旋转法

考察参数方程 >

<≤≤???==3)()(b t a t f y t g x

由Cauchy 中值定理的条件可知,方程< 3 >的图像是XOY 平面上一条连续且光滑的曲线L ,其端点分别为())(),(a f a g A 和())(),(b f b g B 。

如图1,设弦AB 与x 轴正方向的夹角为α,且r AB =。旋转x 轴,使得'Ox 平行于AB ,曲线L 在'Ox 上的投影分别为)]('),('[b g a g ,则曲线上一点())(),(,t f t g M 在新坐标系''Oy x 的坐标为

)cos )(,sin )(cos )(()','(αααt f t f t g y x += 其中,r a g b g )()(cos -=

α,r a f b f )()(sin -=α

故曲线L 在新坐标系''Oy x 下的参数方程为

r a f b f t f r a f b f t f r a g b g t g y r a g b g t g x )()()()()()()()()(')()()('--+???????+--=-=

r a g b g m )()(-=

,r a f b f n )()(-=

则><4式可化为

???+-=+=)()(')()('t nf t mg y t nf t mg x

显然,对于任意),(b a t ∈,dt dx '与dt dy '

均存在。 设0'≠dt dx ,则方程< 3 >在)]('),('[b g a g 上满足Roller 中值定理的所有条件并且有: 0

'')(''==ξg x dx dy

即至少存在),(b a ∈ξ,使得:

0)('')(')(')(')(')(''''==++-==ξξg x t nf t mg t nf t mg g x dx dy

经化简可得:

)(')(')()()()(ξξg f a g b g b f a f =-- 证毕。

比较Lagrange 中值定理和Roller 中值定理便可知道,它们的区别仅仅在于区间端点的函数值相等与不相等,如果将Lagrange 中值定理中函数所对应的图象通过旋转坐标使得该函数两端点的函数值相等。于是旋转后图像所对应的新函数则满足Roller 中值定理的所有条件,从而证明Lagrange 中值定理。先引入坐标系的旋转变换T ,即:

?

??-=-=ααααcos sin sin cos Y X y Y X x , 因为其系数行列式

01cos ,sin sin ,cos ≠=-αα

αα

所以还存在变换T 的逆变换1-T

,即:

?????+-=+-=+=+=ααααααααcos )(sin cos sin )(sin )(cos sin cos )(x f x y x x Y x f x y x x X

不难求得当 a b a f b f --=)()(arctan

α

时,)()(b Y a Y =同时可知Y(x)在],[b a 上连续,在(a ,b)内可微,

故知Y(x)满足罗尔定理条件,则存在一点ξ(,),a b ∈使得0)('=ξY ,

即:

0cos )('sin =+-αξαf

因为?<

a b a f b f a f --===

)()(tan cos sin )('ααξ

证毕。

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

柯西中值定理

§2 柯西中值定理和不等式极限 一柯西中值定理 定理(6.5) 设、满足 (i) 在区间上连续, (ii) 在内可导 (iii) 不同时为零; (iv) 则至少存在一点使得 柯西中值定理的几何意义 曲线由参数方程 给出,除端点外处处有不垂直于轴的切线, 则上存在一点 P处的切线平行于割线.。 注意曲线 AB在点处的切线的斜率为

, 而弦的斜率为 . 受此启发,可以得出柯西中值定理的证明如下: 由于, 类似于拉格朗日中值定理的证明,作一辅助函数 容易验证满足罗尔定理的条件且 根据罗尔定理,至少有一点使得,即

由此得 注2:在柯西中值定理中,取,则公式(3)可写成 这正是拉格朗日中值公式,而在拉格朗日中值定理中令,则 . 这恰恰是罗尔定理. 注3:设在区间I上连续,则在区间I上为常数,. 三、利用拉格朗日中值定理研究函数的某些特性 1、利用其几何意义 要点:由拉格朗日中值定理知:满足定理条件的曲线上任意两点的弦,必与两点间某点的切线平行。 可以用这种几何解释进行思考解题: 例1:设在(a ,b)可导,且在 [a,b] 上严格递增,若,则对一切 有。 证明:记A(),,对任意的x,记C(),作弦线AB,BC,应用拉格 朗日中值定理,使得分别等于AC,BC弦的斜率,但因严格递增,所以

<,从而 < 注意到,移项即得<, 2、利用其有限增量公式 要点:借助于不同的辅助函数,可由有限增量公式 进行思考解题: 例2:设上连续,在(a,b)内有二阶导数,试证存在使得 证:上式左端 作辅助函数 则上式 =, =

,其中 3、作为函数的变形 要点:若在[a,b]上连续,(a,b)内可微,则在[a,b]上 (介于与 之间) 此可视为函数的一种变形,它给出了函数与导数的一种关系,我们可以用它来研究函数的性质。 例3 设在上可导,,并设有实数A>0,使得 ≤在上 成立,试证 证明:在[0,]上连续,故存在] 使得 ==M 于是 M=≤A≤≤ 。 故 M=0,在[0,] 上恒为0。用数学归纳法,可证在一切[]( i=1,2,…)上恒有 =0, 所以=0, 。

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

微积分基本定理的证明

理学院 School of Sciences 微积分基本定理的证明 Proof of the fundamental theorem of calculus 学生姓名:张智 学生学号:201001164 所在班级:数学101 所在专业:数学与应用数学 指导老师:杨志林

摘要 微积分学这门学科在数学发展中的地位是十分重要的,自十七世纪以来,微积分不断完善成为一门学科。而微积分基本定理的则是微积分中最重要的定理,它的建立标志着微积分的完成,成为数学发展史的一个里程碑。因此就有了研究微积分基本定理的必要性。本文从十七世纪到二十世纪以来的科学家如巴罗、牛顿、莱布尼兹、柯西、黎曼、勒贝格等人对微积分基本定理的发展所作出的贡献展开论述。并论述了定理在微积分学理论发展中的应用。如换元公式、分部积分公式、Taylor中值定理的积分证明、连续函数的零点定理的证明,建立了微分中值定理与积分中值定理的联系,在一元函数和多元函数上的推广等等。最后给出定理的几个证明方法。 关键词:微积分基本定理,发展史,定理的应用,定理的证明

ABSTRACT Calculus the subject in the position of the development of mathematics is very important,since seventeenth Century,calculus constantly improved as a discipline.While the fundamental theorem of calculus is the most important theorems in calculus,which establishment marks the complete of the calculus, become a milepost of the development history of mathematics. So it is necessary to study the fundamental theorem of calculus. In this paper,since seventeenth Century to twentieth Century,launches the elaboration from scientists such as Barrow, Newton, Leibniz, Cauchy, Riemann, Lebesgue and others on made the contribution to the development of the fundamental theorem of calculus. And discusses the application of theorem in the development of the calculus theory.Such as the transform formula, integral formula of integration by parts, proof of the Taylor mean value theorem of continuous function, the zero point theorem proof, established the differential mean value theorem and the integral mean value theorem in contact,a unary function and multivariate function on the promotion and so on.Finally gave several proofs of the theorem. Keywords:Fundamental Theorem of Calculus,phylogeny,Application,Proof

中值定理的应用方法与技巧

中值定理的应用方法与技巧 中值定理包括微分中值定理和积分中值定理两部分。微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。积分中值定理有积分第一中值定理和积分第二中值定理。积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f b a -=?ξ。积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得??=b a b a dx x g f dx x g x f )()()()(ξ。 一、 微分中值定理的应用方法与技巧 三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。 例一.设)(x ?在[0,1]上连续可导,且1)1(,0)0(==??。证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+') ()(η?ξ?成立。 证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ?==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(??ξ?。 任意给定正整数b ,再令)()(,)(21x x g bx x g ?==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=') 0()1(0)(??η?。 两式相加得:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得 b a b a +='+') ()(η?ξ? 成立。 证法2:任意给定正整数b a ,,令)()(,)(21x x f ax x f ?==,则在[0,1]上对

柯西中值定理的证明及应用

柯西中值定理的证明及应用 马玉莲 (西北师范大学数学与信息科学学院,甘肃,兰州,730070) 摘要:本文多角度介绍了柯西中值定理的证明方法和应用, 其中证明方法有: 构造辅助函数利用罗尔定理证明,利用反函数及拉格朗日中值定理证明, 利用闭区间套定理证明, 利用达布定理证明, 利用坐标变换证明. 其应用方面有:求极限、证明不等式、证明等式、证明单调性、证明函数有界、证明一致连续性、研究定点问题、作为函数与导数的关系、推导中值公式. 关键词:柯西中值定理; 证明; 应用

1.引言 微分中值定理是微分学中的重要定理,它包括罗尔定理、拉格朗日定理、柯西中值定理,而柯西中值定理较前两者更具有一般性、代表性,其叙述如下: 柯西中值定理:设函数f(x),g(x)满足 (1) 在[,]a b 上都连续; (2) 在(,)a b 内都可导; (3) '()f x 和'()g x 不同时为零; (4) ()()g a g b ≠, 则存在(,)a b ξ∈,使得 ()()() ()()() f f b f a g g b g a ξξ''-=- . (1) 本文从不同思路出发,展现了该定理的多种证明方法及若干应用,以便其更好的被认识、运用. 2.柯西中值定理的证明 2.1构造辅助函数利用罗尔定理证明柯西中值定理 罗尔定理 设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 上可导,且 ()()f a f b =则至少存在一点,(,)a b ξ∈ , 使得 因为()0g ξ'≠(若()g ξ'为0则()f ξ'同时为0, 不符条件)故可将(2)式改写为(1)式. 便得所证.

拉格朗日中值定理

一拉格朗日中值定理 拉格朗日中值定理,又被称为有限增量定理,是微积分中的一个基本定理。拉格朗日中值公式的形式其实就是泰勒公式的一阶展开式的形式。在现实应用当中,拉格朗日中值定有着很重要的作用。拉格朗日中值定理是所有的微分中值定理当中使用最为普遍的定理。 拉格朗日中值定理的形成和发展过程都显示出了数学当中的一个定理的发展是一个推翻旧,出现创新的一个进程。发现一些新的简单的定理去替代旧的复杂的定理,就是由初级走向高级。 用现代的语言来描述,在一个自变量x从x变为x+1的过程中,如果函数f(x)本身就是一个极限值,那么函数f(x+1)的值也应该是一个极限值,其值就应该和f(x)的值近似相等,即 这就是非常著名的费马定律,当一个函数在x=a处可以取得极值,并且函数是可导函数,则。著名学者费马再给出上述定理时,此时的微积分研究理论正处于初始阶段,并没有很成熟的概念,没有对函数是否连续或者可导作出限制,因此在现代微积分理论成熟阶段这种说法就显得有些漏洞。 在所有的微分中值定理中,最重要的定理就是拉格朗日中值定理。最初的拉格朗日中值定理和现在成熟的拉格朗日中值定理是不一样的,最初的定理是函数f(x)在闭区间[a,b]任取两点,并且函数在此闭区间是连续的,的 最大值为A,最小值为B,则的值必须是A和B之间的一个值。这是拉格朗日定理最初的证明。 下述就是拉格朗日中值定理所要求满足的条件。 如果存在一个函数满足下面两个条件,(1)函数f 在闭区间[a,b]上连续;(2)函数f 在开区间(a,b)可导;那么这个函数在此开区间至少存在着一点,使得. 拉格朗日中值定理是导数的一个延伸概念,在导数运算中是的很基本概念。 例1:函数

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

拉格朗日插值定理证明

拉格朗日插值定理证明 作者:田茂(tianmao999@https://www.wendangku.net/doc/7b5256869.html, ) 已知: 110111212 211()1...()1...*......................()1...N N N N N N N f x a x x f x a x x f x a x x ----??????????????????=???????????????? ??(1) 则有: 01111100()1*....()()() N N N N i i j i i j j i a a f x x x a x a f x a a ----==≠????????=???????? -=-∑∏ (2) 证明过程如下: 由: ()()0i i f x a f a =-=(3) 可知: ()()()()i i f x f a x a g x -=-(4) 即有: ()()mod()i i f x f a x a ≡-(5) 由中国余数定理(CRT )可知: 1()()*()*()n i i i i f x N x M x f a ==∑(6) 式(6)中,()i M x 满足: 1()()n i j j j i M x x a =≠=-∏(7) ()i N x 满足: ()()()()1i i i i N x M x n x x a +-=(8) 即有:

()()1mod ()i i i N x M x x a ≡-(9) 由(7)得: ()()()111()() ()mod()n i j j j i n i i j j j i n i j i j j i M x x a x a a a a a x a =≠=≠=≠=-=-+-≡--∏∏∏(10) 如果要满足式(9),由(10)可知,()i N x 为: ()11 ()i n i j j j i N x a a =≠=-∏(11) 将(7)和(11)代入(6)可得: ()1 1111100()()*()*() 1*()*()()()() n i i i i n n j i n i j i j j i j j i N N i i j i i j j i f x N x M x f a x a f a a a x a f x a a ===≠=≠--==≠==---=-∑∑∏∏∑∏(12) 命题得证。

总结拉格朗日中值定理的应用

总结拉格朗日中值定 理的应用

总结拉格朗日中值定理的应用 以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,尤其是拉格朗日中值定理。他建立了函数值与导数值之间的定量联系,因而可用中值定理通过导数研究函数的性态。中值定理的主要作用在于理论分析和证明,例如为利用导数判断函数单调性、取极值、凹凸性、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,我们需要对其能够熟练的应用,这对高等数学的学习有着极大的意义! 拉格朗日中值定理的应用主要有以下几个方面:利用拉格朗日中值定理证明(不)等式、利用拉格朗日中值定理求极限、研究函数在区间上的性质、估值问题、证明级数收敛。首先我想介绍几种关于如何构造辅助函数的方法。 凑导数法。:这种方法主要是把要证明的结论变形为罗尔定理的结论形式, 凑出适当的函数做为辅助函数,即将要证的结论中的换成X,变形后观察法凑成F’(X),由此求出辅助函数F(x).如例1. 常数值法:在构造函数时;若表达式关于端点处的函数值具有对称性,通 常用常数k值法来求构造辅助函数,这种方法一般选取所证等式中含的部分

作为k,即使常数部分分离出来并令其为k,恒等变形使等式一端为a与f(a)构成的代数式,另一端为b与.f(b)构成的代数式,将所证式中的端点值(a或b)改为变量x移项即为辅助函数f(x),再用中值定理或待定系数法等方法确定k,一般来说,当问题涉及高阶导数时,往往考虑多次运用中值定理,更多时要考虑用泰勒公式.如例3. 倒推法::这种方法证明方法是欲证的结论出发,借助于逻辑关系导出已知的条件和结论.如例4。

中值定理证明

中值定理 首先我们来看看几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及f(b)=B ,那么对于A 与B 之间的任意一个数C ,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

牛顿-莱布尼茨公式的详细证明

牛顿—莱布尼茨公式 前言 此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。 公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。 所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂! (Ps :如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字) 定积分性质的证明 首先给出定积分的定义: 设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n 个区间[a,x 1],[x 1,x 2]…[x n ,x n-1],其中x 0=a ,x n =b ,第i 个小区间?x i = x i -x i-1(i=1,2…n)。 由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为?S i =f(εi ) ?x i ,为此定积分可以归结为一个和式的极 限 即: 性质1:证明?b a c dx = C(b-a),其中C 为常数. 几何上这就是矩形的面积 性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数. 设K(x)=F(x)-G(x) 定义域为K 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞=?=-+-++-=-=-∑?0()()() ()()()()()0()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ?→''=='''∴=-=-=+?-'∴==?Q 1()lim ()n b a n i i i f x dx f x ε→∞==?∑ ?

罗尔定理与拉格朗日定理的证明与应用

罗尔定理与拉格朗日定理的证明与应用

单位:旅游系 专业:酒店管理 姓名:王姐 学号:1414061039 【摘要】罗尔定理与拉格朗日定理是是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断导数的整体性质的工具。拉格朗日定理存在于多个科学领域之中,其中微积分中的拉格朗日定理即拉格朗日中值定理,又称拉式定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的形式。它在初等数学中有着重要作用,也是一个基础性定理。在许多方面它都有重要的作用 ,在进行一些公式推导与定理证明中都有很多应用。 【关键词】罗尔定理、拉格朗日定理、重要应用。 引言 拉格朗日定理是高等数学的基础,同时也是一个基础性的定理,在高等数学中有着重要作用,要学习和掌握它的证明方法。 罗尔定理:如果函数()f x 满足条件:○ 1在闭区间[,]a b 上连续;○2在开区间(,)a b 内可导;○ 3在区间两个端点的函数值相等,即()()f a f b =,(,)a b ξ∈,使得'()0f ξ=。 罗尔定理的证明:因为函数()f x 在闭区间[,]a b 上连续,所以它在[,]a b 上必能取得最大值M 和最小值m 。 (1)如果M m =,则()f x 在[,]a b 上恒等于常数M ,因此,在整个区间(,)a b 内恒有 '()0f x =,所以,(,)a b 内每一点都可取作ξ,此时定理显然成立。 (2)如果m M <,因()()f a f b =,则数M 与m 中至少有一个不等于端点的函数值()f a ,设()m f a ≠,这就是说,在(,)a b 内至少有一点ξ,使得()f M ξ=。 下面证明'()0f ξ=。 由于()f M ξ=是最大值,所以不论x ?为正或负,恒有()()0f x f x ξ+?-ξ≤?, (,)x a b ξ+?∈。 当0x ?>时,()()0f x f x ξ+?-ξ≤?,有已知条件'()f ξ存在可知,

微积分基本定理说课稿

《微积分基本定理》(说课稿) 一、教材分析 1、教材的地位及作用 我所选用的教材是科学出版社出版的高等教育“十一五”规划教材《经济数学基础》,由宋劲松老师主编。微积分基本定理是第四章第二节内容,本节内容共设计两个课时,这节课的主要内容是微积分基本公式的导出以及用它求定积分。 本节课是学生学习了不定积分和定积分这两个概念后的继续,它不仅揭示了不定积分和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 二、教学目标及重点、难点 1、教学目标 根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下: (1)知识与技能目标:通过本节的学习,使学生了解变上限的定积分的定义及相关定理,掌握牛顿—莱布尼兹公式,通过例题及练习,使学生在增加对牛顿—莱布尼兹公式感性认识的基础上,熟练掌握求定积分的方法,从而能够熟练计算定积分. (2)能力目标:本节所讲数学知识主要是为学生学习专业课做准备。要逐步培养学生具有比较熟练的基本运算能力、提高综合运用所学知识分析和解决实际问题的能力。 (3)德育目标:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 2、教学重点、难点 根据教材内容特点及教学目标的要求确定本节重点为通过探究变上限定积分与原函数的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 根据学生的年龄结构特征和心理认知特点确定本节难点:了解微积分基本定理的含义. ——以学生现有的知识水平对于微积分基本定理的严密证明是存在着一定难度的,而突破难点的关键在于让学生主动去探索,体会微积分基本公式的导出以及利用它来计算简单的定积分,这样才能从真正意义上把握该定理的含义,提高学生的能力,体现学生的主体地位. 三、教法和学法 1、教法: 素质教育理论明确要求:教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高,根据本节的教学内容及教学目标和学生的认识规律,我采用类比、启发、引导、探索式相结合的方法,启发、引导学生积极思考本节课所遇到的问题,引导学生联想旧知识来解决和探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现了学生的主体地位。 2、学法:

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔() Rolle中值定理 如果函数()x f满足条件:()1在闭区间[]b a,上连续;()2在开区间()b a,内可导;(3)()()b f a f=,则在()b a,内至少存在一点ζ ,使得()0 '= ζ f 罗尔中值定理的几何意义:如果连续光滑曲线()x f y=在点B A,

处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ, 使得()0'=ζf . 这就是说定理的 条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理 若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间 ()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --=ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦 AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中

柯西中值定理在中学中的应用和扩展

中值定理在中学数学教学的应用 摘要:通过对柯西中值定理进行讨论,明确了中学教学引入柯西中值定理的意义。分别讨论了柯西中值定理在中学教学中关于函数单调性、不等式和等式证明方面的应用。提出柯西中值定理在不等式和等式证明方面相较于纯粹的求导的方法具有快捷、计算简单的优势。最后,对中值定理在中学教学的扩展进行了讨论。 关键词:柯西中值定理;中学教学 前言随着当今社会科学技术的不断发展,定量思维正逐渐影响着公众的生活。随之而来的是对各个学科教学发展的要求。将微积分这一思想引入中学的教学是提高中学教学水平的一种体现。相较于基础教学,微积分具有鲜明的几何意义,目前在中学数学、物理等学科的教学中已经由辅助角色抬升到处理解决问题的有效工具。但是,由于引入了新的概念,在具体应用,尤其是教学的方式方法上与以往的教学差别很大,给教学工作带来了一定的困难。柯西中值定理作为微分中值定理中重要的一个定理,在中学微积分的教学中占有重要比例。但是,目前对柯西中值定理在中学教学的讨论和分析较少。因此,有必要对可惜中值定理在中学教学中的应用和扩展进行讨论。 一柯西中值定理 柯西中值定理与罗尔定理、拉格朗日中值定理并称为微分方程三个基本定理。柯西中值定理的具体表述概念为:假设两个函数分别为f(x)和g(x)。这两个函数f(x)和g(x)分别满足三个条件:第一个是条件是f(x)和g(x)在闭区间[a,b]上函数是连续的,第二个条件是是f(x)和g(x)在开区间(a,b)内函数是可导的,第三个条件是当x∈开区间(a,b)时,不等于0。当三个条件同时满足时,在开区间(a,b)中至少存在一点ξ∈开区间(a,b),能够使得(ξ)/(ξ)=(f(a)-f(b))/g(a)-g(b))。具体证明为如果假设g(a)与g(b)相等。根据罗尔定理,在开区间(a,b)上,存在一点x,使得等于0。而这与之前假设的第三个条件矛盾。因此, g(a)与g(b)不相等。然后假设存在一函数h(x),且h(x)=f(x)-(f(b)-f(a))/(g(b)-g(a))。根据h(x)得出该函数在闭区间[a,b]上是连续的,在开区间(a,b)上是可导的且h(a)=h(b)=(f(a)g(b)-f(b)g(a))/(g(b)-g(a))。则根据罗尔定理推出,在开区间(a,b)上,存在一点ξ,使得(ξ,也就是ξ=(f(b)-f(a))/(g(b)-g(a))·ξ。由以上证明过程可以看出,柯西中值定理就是一个函数相较于另一个函数的变化的问题。倘若g(x)设定为g(x)=x,即一个函数相较于x坐标轴的相较变化的问题,柯西中值定理就是拉格朗日中值定理的形式。由此分析拉格朗日中值定理是柯西中值定理的特定表达形式,而柯西中值定理则是x坐标轴参数化了的拉格朗日中值定理。从几何角度分析,其意义为以参数方程为表达形式的曲线中,存在一个点,使得在这个点上的曲线的切线与曲线两个端点所在的弦。 二中学教学引入柯西中值定理的意义 恩格斯曾经将微积分学的创立称为“人类精神层面的最高胜利”。将包括柯西中值定理在内的微分中值定理的内容引入到中学数学,不仅为学生在学习和计算上提供了一个有力的工具、扩展了学生学习的领域,还发散了学生思考、考虑问题的方式,有助于学生有效的解决与函数相关的大量问题。而且,将包括柯西中值定理在内的微分中值定理的内容引入到中学数学,

拉格朗日中值定理的应用

拉格朗日中值定理的 应用

总结拉格朗日中值定理的应用 以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,尤其是拉格朗日中值定理。他建立了函数值与导数值之间的定量联系,因而可用中值定理通过导数研究函数的性态。中值定理的主要作用在于理论分析和证明,例如为利用导数判断函数单调性、取极值、凹凸性、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,我们需要对其能够熟练的应用,这对高等数学的学习有着极大的意义! 拉格朗日中值定理的应用主要有以下几个方面:利用拉格朗日中值定理证明(不)等式、利用拉格朗日中值定理求极限、研究函数在区间上的性质、估值问题、证明级数收敛。首先我想介绍几种关于如何构造辅助函数的方法。 凑导数法。:这种方法主要是把要证明的结论变形为罗尔定理的结论形式, 凑出适当的函数做为辅助函数,即将要证的结论中的换成X,变形后观察法凑成F’(X),由此求出辅助函数F(x).如例1. 常数值法:在构造函数时;若表达式关于端点处的函数值具有对称性,通 常用常数k值法来求构造辅助函数,这种方法一般选取所证等式中含的部分

作为k,即使常数部分分离出来并令其为k,恒等变形使等式一端为a与f(a)构成的代数式,另一端为b与.f(b)构成的代数式,将所证式中的端点值(a或b)改为变量x移项即为辅助函数f(x),再用中值定理或待定系数法等方法确定k,一般来说,当问题涉及高阶导数时,往往考虑多次运用中值定理,更多时要考虑用泰勒公式.如例3. 倒推法::这种方法证明方法是欲证的结论出发,借助于逻辑关系导出已知的条件和结论.如例4。

相关文档
相关文档 最新文档