文档库 最新最全的文档下载
当前位置:文档库 › 港口问题_排队论

港口问题_排队论

港口问题_排队论
港口问题_排队论

排队模型之港口系统

本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1

M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。好。关键词:问题提出:

一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。

那么,每艘船只在港口的平均时间和最长时间是多少?

若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少?

卸货设备空闲时间的百分比是多少?

船只排队最长的长度是多少?

问题分析:

排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。【1】

M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,//1

前面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。

蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。(2)

排队论研究的基本问题

1.排队系统的统计推断:即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行研究。

2.系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。

3.最优化问题:即包括最优设计(静态优化),最优运营(动态优化)。【3】 为了得到一些合理的答案,利用计算器或可编程计算器来模拟港口的活动。 假定相邻两艘船到达的时间间隔和每艘船只卸货的时间区间分布,加入两艘船到达的时间间隔可以是15到145之间的任何数,且这个区间内的任何整数等可能的出现。再给出模拟这个系统的一般算法之间,考虑有5艘传至的假象情况。

对每艘船只有以下数据: 因为船1在时钟于t=0分钟计时开始后20分钟到达,所以港口卸货设备在开始时空空闲了20分钟。船1立即开始卸货,卸货用时55分,其间,船2在时钟开始计时后t=20+30=50分中到达。在船1与t=20+55=75分钟卸货完毕之前,船2不能开始卸货,这意味着船2在卸货前必须等待75-50=25分钟。

在船2开始卸货之前,船2于t=50+15=65分钟到达,因为船2在t=75分钟开始卸货,并且卸货需45分钟,所以在船2与t=75+45=120分钟卸货完毕之前,船3不能开始卸货。这样,船3必须等待120分钟。

船4在t=65+120=185分钟之前没有到达,因此船3已经在t=120+60=180分钟卸货完毕,港口卸货设备空闲185-180=5分钟,并且,船4到达后立即卸货。

最后,在船4于t=185+75=260分钟卸货完毕之前,船5在t=185+25=210到达,于是船5在开始卸货前等待260-210=50分钟。 模型建立:

对于问题中存在的服务系统,建立排队论模型,在仅能为一艘船通过是一个标准的//1M G 模型:

所谓//1M G 模型,就是输入过程为泊松流时,服务时间为任意的条件之下的,服务机器只有一个得时候。对于//1M G 模型,服务时间T 的分布式一般的,

船1 船2 船3 船4 船5 相邻两艘船到达的时间间隔 20 30 15 120 25 卸货时间

55

45

60

75

80

(但是要求期望值()E T 和()Var T 方差都存在),其他条件和标准的//1M M 型相同。为了达到稳态1ρ<还是必要的,其中有()E T ρλ=。

单服务员的排队模型设:

(1) 船只到来间隔时间服从参数为0.1的指数分布. (2) 对船只的服务时间服从[4,15]上的均匀分布. (3) 排队按先到先服务规则,队长无限制. 系统的假设:

(1) 船只源是无穷的; (2) 排队的长度没有限制;

(3) 到达系统的船只按先后顺序依次进入服务, 即“先到先服务”。 符号说明

w :总等待时间;c i :第i 个顾客的到达时刻;b i :第i 个顾客开始服务时刻;e i :第i 个顾客服务结束时刻;x i :第i-1个顾客与第i 个顾客之间到达的间隔时间;y i :对第i 个顾客的服务时间 c i =c i-1+ x i e i =b i +y i b i =max(c i ,e i-1)

图9-2单服务台单队系统

船只到达

进入队列

服务台

接受服务

船只离去

模框

初始化:令i=1,e i-1=0,w=0

产生间隔时间随机数x i ~参数为0.1的指数分布

c i =x i , b i =x i

产生服务时间随机数y i ~[4,15]的均匀分布 e i =b i +y i

模型检验:

表1 100艘船港口和系统的模拟结果

97 79 78 81 85 99 一艘船呆在港口

的平均时间

上图为一艘船呆在港口的平均时间

上图为一艘船呆在港口的最长时间

一艘船呆在港口的最长时间

174 121 111 141 140 159

一艘船的平均等待时间

23 8 5 9 12 24

一艘船的最长等待时间

99 46 33 64 68 93

卸货设备空闲时间的百分比

0.067 0.079 0.093 0.07 0.069 0.028

一艘船的平均等待时间

上图为一艘船的最长等待时间

上图为一艘船的最长等待时间

以上就是对港口问题的具体分析,其实港口问题还可以从船只的排队角度出发,我们还可以对多个港口通行做相应的模拟试验,让船主尽量减少等待时间且

港口卸货设备的利用率达到最高,从而是港口的主人获得更大的利润。从排队角度来解决问题,可以使问题的广度增加,选秘书问题就是一个很典型的例子,可以从排队角度解决,如果用我在文章中应用的方法来解决也是可以的,这仅仅是一个港口的小问题,甚至可以说是一个非常简单的问题,但是已经让我感觉到了数学的美,在老师的引导下慢慢接近一种抽象的美,在写论文的这几天中,数据的整理和分析是最值得享受的时刻,在Excel里输入自己的数据,是一种忐忑的感觉,因为在那么多的数据面前,我真的不知道将会发生什么,拟合的过程就更是有意思了,一次一次的尝试,一次一次的比较,在这个过程中,如果有一点点的进步都会让我兴奋,数学建模在生活中处处存在,如果真的能够掌握这个本领,生活一定会变得简单而精彩!

参考文献:

(1)《运筹学》教材编写组编. 运筹学. 北京:清华大学出版社,2008

(2)Jerry Banks,John S.Carson,Barry L Nelson 等著. 离散事件系统仿真.北京:机械工业出版社,2007

(3) <<排队论模型与蒙特卡罗仿真>>

附录一

编程如下:

clear

cs=100;

for j=1:cs

w(j)=0;

i=1;

x(i)=exprnd(10);

c(i)=x(i);

b(i)=x(i);

while b(i)<=480

y(i)=unifrnd(4,15);

e(i)=b(i)+y(i);

w(j)=w(j)+b(i)-c(i);

i=i+1;

x(i)=exprnd(10);

c(i)=c(i-1)+x(i);

b(i)=max(c(i),e(i-1));

end

i=i-1;

t(j)=w(j)/i;

m(j)=i;

end

pt=0;

pm=0;

for j=1:cs

pt=pt+t(j);

pm=pm+m(j);

end

pt=pt/cs

pm=pm/cs

附录二

排队论中一个感兴趣的问题时,当输入过程是Possion流时,顾客相继到达的间隔时间T服从什么规律。

定理 设(){},0N t t ≥是具有参数λ的泊松过程,即(){}()

{}

,0,1,2,,0,,1!

n

t

n t P N t n e

n t T n n λλ-===>≥ 是对应的时间间隔序列,则随机变量()

0,1,2,,0n

T

n t => 是独立同分布的,且服从均

值为1

λ-的负指数分布,即()-t

e

t 0

0 t 0

f t λλ?≥?=?

证明 因为1T 是Possion 过程中第一个顾客到达的时间,所以时间{}

1

T t ≥等价于[)

0,t 内没有顾客到达。故{}(){}()

1

00!

t

t

t P T

t P N t e

e

λλλ--≥===

=,进而可得

{}{}111t

P T t P T t e

λ-<=-≤=

所以1T 是服从均值为1

λ-的负指数分布。

1、利用Possion 过程的独立、平稳增量性质,得

{}[){}[){}()()(){}

()(){}(){}

2112,, 000 t

P T t T s P t t s T s P t t s Possion P N t s N s P N t N Possion e

P T t λ-≥==+==+=+-==-===≥在内没有顾客到达在内没有顾客到达过程的独立性过程的平稳增量性质

即{}{}2

211t

P T

t P T t e

λ-<=-≥=-,故2T 也是服从均值为1

λ-的负指数分布。

2、对于任意的1n ≥和1,,0n

t s s ≥ 有

{}()(){}()(){}11221-111-1,,,000t

n n n n n P T t T s T s T s P N t s s N s s P N t N e

λ--≥====+++-++==-==

即 {}t

n

1e

P T

t λ-<=-,所以对任一()1n

T

n ≥,它都服从均值为1

λ

-的负指数分布。证毕。

排队论的应用

排队论的应用 ——食堂排队问题 刘文骁 摘要 本文通过运筹学中排队论的方法,为食堂排队问题建立模型,研究学生排队就餐时间节约的影响因素,通过简单计算,得出影响最大因素。排队论是通过研究各种服务系统的排队现象,解决服务系统最优设计和最优化控制的一门科学。本文将根据食堂排队状况建立数学模型,运用排队论的观点进行分析,找出可以减少排队时间的最大影响因素。 关键词 排队论;M/M/s模型;食堂排队 引言 在学校里,常常可以看到这样的情况:下课后,许多同学正想跑到食堂买饭,小小的买饭窗口前没过几分钟便排成了长长的队伍,本来空荡荡的食堂立即变得拥挤不堪。饥肠辘辘的学生门见到这种长蛇阵,怎能不怨声载道。减少排队等待时间,是学生们十分关心的问题。 1.多服务台排队系统的数学模型 1.1排队论及M/M/s模型 排队论是研究排队系统(又称为随即服务系统)的数学理论和方法,是运筹学的一个重要分支。在日常生活中,人们会遇到各种各样的排队问题。排队问题的表现形式往往是拥挤现象。 排队系统的一般形式符号为:X/Y/Z/A/B/C。 其中:X表示顾客相继到达时间间隔的分布;Y表示服务时间的分布;Z表

示服务台的个数;A 表示系统的容量,即可容纳的最多顾客数;B 表示顾客源的数目;C 表示服务规则。 排队论的基本问题是研究一些数量指标在瞬时或平稳状态下的概率分布及其数字特征,了解系统运行的基本特征;系统数量指标的统计推断和系统的优化问题等。 当系统运行一定时间达到平稳后,对任一状态n 来说,单位时间内进入该状态的平均次数和单位时间内离开该状态的平均次数应相等,即系统在统计平衡下“流入=流出”。 据此,可得任一状态下的平衡方程如下: 由上述平衡方程,可求的: 平衡状态的分布为:)1(,2,1,0 ==n p C p n n 其中:)2(,2,1,1 10 21 == ---n C n n n n n μμμλλλ 有概率分布的要求:10=∑∞ =n n p ,有:1100=?? ? ???+∑∞ =p C n n ,则有: )3(1100 ∑∞ =+= n n C p 注意:(3)式只有当级数∑∞=o n n C 收敛时才有意义,即当∑∞ =?∞o n n C 时才能由上 述公式得到平稳状态的概率分布。

排队论例题

排队论例题 1、某重要设施是由三道防线组成的防空系统。第一道防线上配备两座武器;第二道防线上配备三座武器;第三道防线上配备一座武器。所有的武器类型一样。武器对来犯敌人的射击时间服从μ=1(架/分钟)的指数分布,敌机来犯服从λ=2(架/分钟)的泊松流。试估计该防空系统的有效率。

解: 武器联合发挥作用 该防空系统有效率 = 1- (三道防线后的损失率) 三道防线均可看成M/M/1/1系统 第一道防线:λ=2架/分钟, μ=2架/分钟(两座武器) ρ=λ/μ=1 .P )A (P ,P ,P ,P P P 1212111110001=======λλρ损 第二道防线 : .P )A (P ,P ,P ,P P P ,)(.414 143313131122100011========= ===λλρμλρμλλ损损三座武器第三道防线: 975 .0,025.0.05.020 1)(,51,54,1,41,41,1.41 313310100012===========∴=+==== ===总损失率该防空系统的有效率总损失率损损损-12 0.05λλλλρμλρμλλP A P P P P P P P P

2、某汽车加油站只有一个加油灌,汽车到达为泊松流,加油时间服从指数分布。平均到达率和平均服务率分别为λ和μ。已知汽车排队等待(不含服务时间)1小时的损失费为C元,加油站空闲1小时损失费为2C元。试求使总的损失费(包括顾客排队等待的损失费和服务机构空闲时的损失费)最小的最优服务强度ρ(ρ=λ/μ)。

解:该排队系统为M/M/1系统 μλρ= W q ==-)(λμμλρρ-12 P0 = 1-ρ=μλ (空闲概率) 每小时空闲时间为1×P0= P0 总损失费为: ρρρ-+-=+=1)1(2220C C Cw Cp y q 对 ρ 求导 C C C C y 22 22)1(22)1()1(22ρρρρρρρ--+-=-+-+-=' ∴22±=ρ 又∵ ρ<1 ∴22-=ρ 由于2阶导数 0)1()2)(1(2)1)(22(422>---+--=''ρρρρρρy ∴在22-=ρ时为0<ρ<1上取最小值 动态规划问题 1.某企业生产某种产品,每月月初按定货单发货,生产得 产品随时入库,由于空间限制,仓库最多能够贮存产品90000件。在上半年(1至6月)其生产成本(万元/ 6个月的生产量使既能满足各月的订单需求同时生产成本最低?

排队论模型

排队论模型 随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。 排队论模型及其在医院管理中的作用 每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。 一、医院系统的排队过程模型 医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。 图1 医院系统的多级排队过程模型 二、排队系统的组成和特征 一般的排队系统都有三个基本组成部分: 1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。 2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。 3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。

胡运权排队论习题解

胡运权排队论习题解 某修理店只有一个修理工人, 来修理的顾客到达次数服从普阿松分布,平均每小时3人,修理时间服从负指数分布,平均需10分钟, 求 (1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间; (8) 必须在店内消耗15分钟以上的概率. 04440s q s q 60M /M /1//3 6.10 31(1)p 1162 111 (2)p (1)(1)()2232 11 (3)1p 1223 (4)L 1()63 13 12(5)L ()632111 (6)()633 1 1 2(7)()636(8)1-F()W W λμρρρλμλρλμλμλρμλω∞∞====-=-==-=-=-=-====--?===--===--===--解:该系统为()模型,,;; ; 人; 人;小时; 小时; 1515-(6-3)- -(-)60 20 e e e . μλω ? ===

11 (1)(2)(3)232 11 (4)(5)2211 (6)(7)(8)3615. 15 -20 答:修理店空闲时间概率为;店内有三个顾客的概率为;店内至少 有一个顾客的概率为;店内顾客平均数为1人;等待服务顾客平均数为人; 在店内平均逗留时间分钟;平均等待修理时间为分钟;必须在店内 消耗分钟以上的概率为e 10.22015(1)(2)(3)(4) 1.25M /M /1. 603(/20λ= =设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为分钟,打字时间服从指数分布,平均时间为分钟,求顾客来打字不必等待的概率;打字室内顾客的平均数;顾客在打字室内平均逗留时间; 若顾客在打字室内的平均逗留时间超过小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做?解:该题属模型人小时0s s s 60)4(/).15 31 (1)p 1144 3 (2)L 3()4311 (3)1()43 1 (4)1.251 1.25 3.23.230.2(/).4W W μρλμλμλμλ λλ ===-=-====--===--=>-≥>-=-,人小时; 人; 小时; ; ,,人小时 1 (1)(2)3(3)4 1(4)0.2/. 答:顾客来打字不必等待的概率为;打字室内顾客平均数为人;顾客在 打字室内平均逗留时间为小时;平均到达率为人小时时,店主才会考虑增加设备及打字员 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间为38s 。由于驾驶人员反映等待时间太长,主管部门打算采用新装置,使汽车通过关卡的平均时间减少到平均30s 。但增加新装置只有在原系统中等待的汽车平均数超过5辆和新系统中关卡空闲时间不超过10%时才是合算的。根据这一要求,分析新装置是否合算。

泊松过程及其在排队论中的应用

泊松过程及其在排队论中的应用 摘要:叙述了泊松过程的基本定义和概念,并列举了泊松过程的其他等价定义和证明并分析了泊松过程在排队论中的应用,讨论了完成服务和正在接受服务的顾客的联合分布。 关键词:泊松过程;齐次泊松过程;排队论 1. 前言 泊松分布是概率论中最重要的分布之一,在历史上泊松分布是由法国数学家泊松引人的。近数十年来,泊松分布日益显现了其重要性而将泊松随机变量的概念加以推广就得到了泊松过程的概念。泊松过程是被研究得最早和最简单的一类点过程,他在点过程的理论和应用中占有重要的地位。泊松过程在现实生活的许多应用中是一个相当适合的模型,它在物理学、天文学、生物学、医学、通讯技术、交通运输和管理科学等领域都有成功运用的例子。 2. 泊松过程的概念 定义3.2 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立增量过程; (3) 在任一长度为t 的区间中,事件A 发生的次数服从参数0t >λ的泊松分布,即对任意是s, t ≥ 0,有 ! )(})()({n t e n s X s t X P n t λλ-==-+, ,1,0=n 则称计数过程{ X(t),t ≥ 0}为具有参数0>λ的泊松过程。 注意,从条件(3)知泊松过程是平稳增量过程且t t X E λ=)]([,由于, t t X E )]([= λ表示单位时间内事件A 发生的平均个数,故称λ为此过程的速率或强度。 从定义3.2中,我们看到,为了判断一个计数过程是泊松过程,必须证明它满足条件(1)、(2)及(3)。条件(1)只是说明事件A 的计数是从t = 0时开始的。条件(2)通常可从我们对过程了解的情况去验证。然而条件(3)的检验是非常困难的。为此,我们给出泊松过程的另一个定义。 定义3.3 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立平稳增量过程; (3) X(t)满足下列两式: o(h). 2} X(t)-h)P{X(t o(h),h 1} X(t)-h)P{X(t =≥++==+λ

排队论习题

排队论习题 1、某大学图书馆的一个借书柜台的顾客流服从泊松流,平均每小时50人,为顾客服 务的时间服从负指数分布,平均每小时可服务80人,求: (1)顾客来借书不必等待的概率3/8 (2)柜台前平均顾客数5/3 (3)顾客在柜台前平均逗留时间1/30 (4)顾客在柜台前平均等待时间1/80 2、一个新开张的理发店准备雇佣一名理发师,有两名理发师应聘。由于水平不同,理发师甲平均每小时可服务3人,雇佣理发师甲的工资为每小时14元,理发师乙平均每小时可服务4人,雇佣理发师乙的工资为每小时20元,假设两名理发师的服务时间都服从负指数分布,另外假设顾客到达服从泊松分布,平均每小时2人。问:假设来此理发店理发的顾客等候一小时的成本为30元,请进行经济分析,选出一位使排队系统更为经济的理发师。 3、一个小型的平价自选商场只有一个收款出口,假设到达收款出口的顾客流为泊松流,平均每小时为30人,收款员的服务时间服从负指数分布,平均每小时可服务40人。(1)计算这个排队系统的数量指标P0、L q、L s、W q、W s。 (2)顾客对这个系统抱怨花费的时间太多,商店为了改进服务准备队以下两个方案进行选择。 1)在收款出口,除了收款员外还专雇一名装包员,这样可使每小时的服务率从40人提高到60人。 2)增加一个出口,使排队系统变成M/M/2系统,每个收款出口的服务率仍为40人。 对这两个排队系统进行评价,并作出选择。 4、汽车按泊松分布到达某高速公路收费口,平均90辆/小时。每辆车通过收费口平均需时间35秒,服从负指数分布。司机抱怨等待时间太长,管理部门拟采用自动收款装

置使收费时间缩短到30秒,但条件是原收费口平均等待车辆超过6辆,且新装置的利用率不低于75%时才使用,问上述条件下新装置能否被采用。 5、有一台电话的共用电话亭打电话的顾客服从λ=6个/小时的泊松分布,平均每人打电话时间为3分钟,服从负指数分布。试求: (1)到达者在开始打电话前需等待10分钟以上的概率 (2)顾客从到达时算起到打完电话离去超过10分钟的概率 (3)管理部门决定当打电话顾客平均等待时间超过3分钟时,将安装第二台电话,问当λ值为多大时需安装第二台。 6、某无线电修理商店保证每件送到的电器在1小时内修完取货,如超过1小时分文不收。已知该商店每修一件平均收费10元,其成本平均每件5.5元,即每修一件平均赢利4.5元。已知送来修理的电器按泊松分布到达,平均6件/小时,每维修一件的时间平均为7.5分钟,服从负指数分布。试问: (1)该商店在此条件下能否赢利 (2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。 7、顾客按泊松分布到达只有一名理发员的理发店,平均10人/小时。理发店对每名顾客的服务时间服从负指数分布,平均为5分钟。理发店内包括理发椅共有三个座位,当顾客到达无座位时,就依次站着等待。试求: (1)顾客到达时有座位的概率 (2)到达的顾客需站着等待的概率 (3)顾客从进入理发店到离去超过2分钟的概率 (4)理发店内应有多少座位,才能保证80%顾客在到达时就有座位。 8、某医院门前有一出租车停车场,因场地限制,只能同时停放5辆出租车。当停满5辆后,后来的车就自动离去。从医院出来的病人在有车时就租车乘坐,停车场无车时就向附近出租汽车站要车。设出租汽车到达医院门口按λ=8辆/小时的泊松分布,从医院依次出来的病人的间隔时间为负指数分布,平均间隔时间6分钟。又设每辆车每次只载一名病人,并且汽车到达先后次序排列。试求:

排队论模型

排队论模型 排队论也称随机服务系统理论。它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: 有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。 由顾客和服务员就组成服务系统。 顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。 一、排队论的一些基本概念 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。 排队规则 即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。 服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。若以ξ 表示服务员为 n },n=1,2,…第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξ n 所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ , 1ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n}也是独立的。 如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。 研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。所以,必须确

排队论医院应用

医院排队论模型 医院排队论模型 医院就医排队是一种经常遇见的非常熟悉的现象.它每天以这样或那样的形 式出现在我们面前. 例如,患者到医院就医,患者到药房配药、患者到输液室输液等,往往需要排队等待接受某种服务. 这里,护士台、收费窗口、输液护士台及其服务人员都是服务机构或服务设备.而患者与商店的患者一样, 统称为患者. 以上排队都是有形的,还有些排队是无形的.由于患者到达的随机性,所以排队现象是不可避免的. 排队系统模拟 所谓排队系统模拟,就是利用计算机对一个客观复杂的排队系统的结构和行 为进行动态模拟,以获得反映其系统本质特征的数量指标结果,进而预测、分析或评价该系统的行为效果,为决策者提供决策依据. 如果医院增添服务人员和设备,就要增加投资或发生空闲浪费;如果减少服务 设备,排队等待时间太长,对患者和社会都会带来不良影响. 因此,医院管理人员要考虑如何在这两者之间取得平衡,以便提高服务质量,降低服务费用. 医院排队论,就是为了解决上述问题而发展起来的一门科学.它是运筹学的重 要分支之一. 在排队论中,患者和提供各种形式服务的服务机构组成一个排队系统,称为随 机服务系统. 这些系统可以是具体的,也可以是抽象的. 排队系统模型已广泛应用于各种管理系统.如手术管理、输液管理、医疗服务、医技业务、分诊服务,等等. 医院排队系统的组成 排队系统的基本结构由四个部分构成:来到过 程(输入)、服务时间、服务窗口和排队规则.

1、来到过程(输入)是指不同类型的患者按照各种 规律来到医院. 2、服务时间是指患者接收服务的时间规律. 3、服务窗口则表明可开放多少服务窗口来接纳患者. 4、排队规则确定到达的患者按照某种一定的次序接 受服务. ⑴来到过程 常见的来到过程有定长输入、泊松(Poisson)输入、埃尔朗(A. K. Erlang)输入等,其中泊松输入在排队系统中的应用最为广泛. 所谓泊松输入即满足以下4个条件的输入: ①平稳性:在某一时间区间内到达的患者数的概率只与这段 时间的长度和患者数有关; ②无后效性:不相交的时间区间内到达的患者数是相互独立 的; ③普通性:在同时间点上就诊或手术最多到达1个患者, 不 存在同时到达2个以上患者的情况; ④有限性:在有限的时间区间内只能到达有限个患者, 不可 能有无限个患者到达. 患者的总体可以是无限的也可以是有限的; 患者到来方式可以是单个的,也可以是成批的; 相继到达的间隔时间可以是确定的,也可是随机的; 患者的到达可以是相互独立的,也可以是关联; 到来的过程可以是平稳的,也可是非平稳的; ⑵服务时间

排队论练习题

第9章排队论 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

排队论模型在医院管理中的应用

·143· 中国民族民间医药 Chinese Journal of Ethnomedicine and Ethnopharmacy 临 床 研 究 Clinical Research 排队论模型在医院管理中的应用 候晓军 大石桥市中心医院妇产科,辽宁 大石桥 115100 【摘 要】:通过对排队论的研究,建立其在医院门诊应用的数学模型,并探讨其实际应用的可行性和注意事项,希望可以为数字化医院的发展提出有益的建议。 【关键词】:排队论;医院管理;应用 【中图分类号】R197.32 【文献标识码】A 【文章编号】1007-8517(2010)08-143-2 医院门诊的特点是患者流量不稳定,由于患者到达时间和诊治患者所需时间的随机性,可控性小,因此,在合理安排诊室和医生等方面存在一定的困难。当诊室不足时,常出现患者等待时间延长,患者满意度下降,造成工作过于忙乱,易引起医患纠纷,对社会带来不良影响。通过对诊室排队系统的研究,科学、量化、准确地描述排队系统的概率规律性,同时对诊室和医生安排进行最优设计和最优运营提出科学有效的整改意见,为门诊工作的安排提供量化、科学的依据,以增加预见性,减少盲目性,从而最大限度地满足患者及家属的需要,同时有效地避免资源浪费,从源头上解决目前“看病贵、看病难”的社会问题。1 研究对象 选取医院门诊患者为研究对象,建立排队系统。以患者到达诊室登记等待为标志,进入诊室排队系统;排队等待的患者数及空间在理论上无限制;患者按照先到先服务的原则,排成一队,依次进入诊室治疗;患者离开诊室表示服务完成,离开排队系统。2 医院门诊排队系统的组成 与一般的排队系统相同,医院的门诊排队系统的基本结构由四个部分构成:来到过程(输入)、服务时间、服务窗口和排队规则。 2.1 来到过程(输入) 是指不同类型的患者按照各种规律来到医院患者的总体可以是无限的也可以是有限的;可以单个或成批到来;相继到达的间隔时间可以是确定的(预约门诊)或随机的;患者的到来可以是相互独立或有关联的;到来的过程可以是平稳的,也可是非平稳的。 2.2 服务时间 是指患者接收服务的时间规律患者接受服务的时间是随机的,其规律是通过概率分布描述,由于一般排队系统的服务时间往往服从负指数分布:即每位患者接受服务的时间是独立同分布的,其分布函数为: B (t )=1-e -μt (t ≥0)其中μ>0为一常数,代表单位时间的平均服务率,而1/μ则是平均服务时间。 2.3 服务窗口 即可开放多少诊室和医生来接纳患者服务窗口的主要属性是服务台的个数,门诊系统明显是多服务台且属于多服务台并联型 2.4 排队规则 确定到达的患者按照某种一定的次序接受医疗服务一般分为三类:损失制、等待制、混合制。 2.4.1 损失制 患者到达时,所有诊室和医生都没有空闲,该患者不愿等待,就随即从排队系统消失,一般是挂两个以上科室号的患者先到另一个科室去就诊了。 2.4.2 等待制 患者到达时,如果所有诊室和医生都没有空闲,他们就排队等待。等待服务的次序又有各种不同的规则:(1)先到先服务,如就诊、排队取药等;(2)后到先服务,如处理病情严重的患者;(3)优先权服务,如照顾老人、军属等。 2.4.3 混合制 既有等待又有损失的情况,如患者等待时考虑排队的队长、等待时间的长短等因素而决定去留。 队列的数目可是单列,也可是多列的(例如诊室中不只一名医生)。还有具体排队(如在候诊室)和抽象排队(如预约排队)。 3 研究方法与内容 在排队论的基础上,利用计算机对医院门诊这一客观复杂的排队系统的结构和行为进行动态模拟,以获得反映其系统本质特征的数量指标,进而进行预测、分析和评价,从而为决策者提供决策依据。 同时,结合计算机叫号程序,我们可以有效提高医疗的就医秩序,减轻护理人员的工作量,提高工作效率,为创造一个良好的医疗环境提供保证。 通过所编制的排队叫号计算机系统,分别记录诊室排队系统中患者到达的时间、排队等候的时间、诊疗服务的时间、当时诊室开放数等。计算排队系统队长、逗留时间、待候时间、忙期、服务强度及系统的瞬时状态等。 分别统计患者到达间隔和服务时间的经验分布,然后按照统计学方法进行检验,确定排队系统符合于哪一种理论分布。 根据排队系统的理论分布类型,运用相应的数学计算公式和方法对排队系统进行描述。 通过给定的条件建立相应数学计算模型进行计算,给出理想的门诊开放诊室数和所需配备的合理医护人员,为实际工作提供可靠的、科学的、有预见性的指导。4 讨论 到医院就诊排队是一种司空见惯的现象,例如患者在诊室排队候诊、到药房排队配药、到输液室排队输液等,这里诊室护士站、收费窗口、输液护士站及其服务人员都是服务机构或服务台,这里的排队都是有形的,还有些排队是无形的。由于患者到达和医疗服务时间的随机性,患者来源数量在理论是无限的,而医疗资源是有限的,当医疗服务的现实需求超过提供该项服务的现有能力时,排队就会发生,因此排队现象是不可避免的。 应用运筹学中的排队论,即随机服务系统理论,是通过数学方法定量地、科学地研究上述问题的一种有效手段。在排队论中,患者和提供各种形式医疗服务的诊室和医护人员组成排队系统,通过排队论,我们可以系统地研究排队系统的各种参数并进行最优设计和最优运营。5 结语 排队模型所得数据只是为了管理的需要,提供决策支持的工具,关键是靠医院管理者来进行调整,而不是简单地根据计算结果来做管理。例如我们可以根据排队的现象和模型的结果,提出如下改进意见:根据医院的实力,投资扩建诊室,完善设施和配备,增加医护人员的数量,解决排队的现象,为患者排优解艰提高医生的诊疗技术水平,有效缩短平均诊疗时间及其波动程度,提高效率,缩短等候时间;规

排队论练习题

第9章排队论 9.1 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、 3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 9.2、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时 间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 9.3、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

排队论习题及答案

《运筹学》第六章排队论习题 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

课程设计 银行排队论分析

南京理工大学 课程考核论文 课程名称:课程设计 论文题目:银行服务数据的统计分析 姓名:李其然 学号:1111850114 成绩: 任课教师评语: 签名: 年月

【摘要】 排队论是运筹学的一个重要分支,又称随机服务系统理论,是研究由随机因素的影响而产生拥挤现象的科学。它通过研究各种服务系统在排队等待中的概率特性,来解决服务系统的最优设计与最优控制问题。随着社会文明的发展与进步,排队已成为和我们生活密不可分的话题。去银行、商场等随机性服务机构购物,如在结算时出现长时排队等待现象,是件让人头痛的事情,有时会因此取消购物计划。身为商家,如何在最低成本运营的情况下最大化的为顾客提供优质服务,减少顾客无谓的等待时间,是重多经营者亟待解决的问题。因此,根据排队论的知识来优化银行的排队系统是具有现实意义的。 计算机模拟就是利用计算机对所研究系统的内部结构、功能和行为进行模拟。由于排队论的应用已越来越广泛,排队特征、排队规则和服务机构也变得 越来越复杂,解析方法已无法求解,而计算机模拟是求解排队系统和分析排队 系统性能的一种非常有效的方法,并且计算机模拟具有成本低,运行速度快, 准确度高的优点。将排队论与计算机模拟结合起来,是今后排队论发展的必然趋势。 在银行中客户排队是一个常见的现象,特别是近年来随着客户规模的不断,扩大以及营业厅扩建速度跟不上客户需求增长的矛盾愈显突出。因此,为平稳波动的客户,需求与移动营业厅有限的服务能力之间的矛盾,提升客户满意度,开展缩短客户等待时长,优化营业厅服务的项目刻不容缓。本文基于需求管理的理论,运用现代项目管理工具,针对南京交通银行营业厅进行顾客达到时间(间隔)、服务员完成服务时间等资料的收集和对客户进行问卷调查、访谈的基础上,对数据进行统计分析,包括数据的均值、众数、中位数、方差指标,并做经验分布函数、拟合数据分布、分布参数的估计、分布假设检验,来反映目前交通银行营业厅排队现状。之后,从客户角度出发,分析了造成移动营业厅排队问题的原因,进而从缴费类型和对时间与价格敏感度两个角度对客户的需求进行了分析,总结出适合缩短客户等待时长的项目管理方案。并在此基础上提出基于需求管理的解决移动营业厅排队问题。 【关键词】:统计特征;分布假设;分布检验

排队论1

引言 自从有战争之日起,战争主要由进攻方和防御方两方构成。而在现代战争中,进攻方将可能实施大规模的导弹袭击。面对这种大量导弹来袭,防御方需要拥有强大的防御系统。 防御系统是一个随机服务的系统,对每一枚进攻的导弹进行防御服务,在不考虑战场电子干扰的前提下,雷达将探测所有的进攻导弹数据,对导弹的攻击目标进行预测。本文根据排队论建立多层导弹防御服务模型,研究防御系统的概率规律性,为防御过程提供最优决策依据。 摘要: 基于排队论的基本理论,建立对于实际的导弹防御阵地与被攻击单位的实际问题的处理和解析模型,详细的讨论了多层部署的方法进行防御的实际的可能性和作用。并对实际的导弹防御问题中多层次的设施分配与服务的概率进行了作战假设和模拟并评价实际的作战效能,具有一定的现实的参考性和实用性。 关键词:排队论;服务概率;效能评估;导弹防御系统 排队论 假设: (1)假设目标的进入防御阵地的过程符合排队论的基本理论,即时损失制排队系统,在此假设中我们假设敌方目标为顾客,我方防御阵地为服务台,分别对于顾客进行服务来进行对于模型的简化处理。 (2)我方的防御阵地分为远中近三个不同的层次对于敌方的目标进行拦截,我们可以认为我方的三层的防御阵地的防御范围是不相重叠的,即对于进入区域的目标只指定一个通道(一架防御设施)进行拦截。 (3)服务(防御)的规则是先到先行服务,不考虑被拦截的目标的优先级。如果当前的防御系统都在进行防御行动,则此时的敌方单位不受我方的防御限制进行突破,而在此敌方单位离开防御范围之前有空闲的通道,则系统同样对此目标进行服务。 (4)敌方单位在经过我方防御阵地时,不会对于我方的防御阵型造成冲击,即防御系统将保持良好,可以继续使用,可以继续对后继的敌方单位拦截。防御阵地模型的建立: 防御阵地拦截敌方单位在排队论的角度来看,是顾客接受串联服务台服务的过程,当一级服务台无法满足顾客的需求或者无法对顾客进行服务时,顾客则进入下一级的服务台。并且每一层的拦截能力相同。 数学模型: 防御阵地系统由第一层防御、第二层防御、第三层防御组成,这三层防御雷达探测到信号就进行拦截,假设这三层防御的雷达只对该层服务,即超越该层不进行探测。因此用图表示防御阵地系统如下: 防御系统的拦截服从泊松分布,又因为是串联服务的过程,防御过程表示为:A。期中第一项A表示相继到达时间间隔分布是指数分布,第二项M /M /1/1/

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题 转载请注明 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:

基于MMS排队论的病床安排模型

CUMCM2009 B 题眼科病床的合理安排 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们 面前,例如,患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等 待住院等,往往需要排队等待接受某种服务。 我们考虑某医院眼科病床的合理安排的数学建模问题。 该医院眼科门诊每天开放,住院部共有病床 79 张。该医院眼科手术主要分 四大类:白内障、视网膜疾病、青光眼和外伤。附录中给出了20 08 年7 月13 日至2008 年9 月11 日这段时间里各类病人的情况。

白内障手术较简单,而且没有急症。目前该院是每周一、三做白内障手术, 此类病人的术前准备时间只需1、2 天。做两只眼的病人比做一只眼的要多一些, 大约占到60%。如果要做双眼是周一先做一只,周三再做另一只。 外伤疾病通常属于急症,病床有空时立即安排住院,住院后第二天便会安排 手术。 其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3 天内就可以 接受手术,主要是术后的观察时间较长。这类疾病手术时间可根据需要安排,一 般不安排在周一、周三。由于急症数量较少,建模时这些眼科疾病可不考虑急症。

该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限 制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急 症除外)不安排在同一天做。当前该住院部对全体非急症病人是按照FCFS(First come, First serve)规则安排住院,但等待住院病人队列却越来越长,医院方面希 望你们能通过数学建模来帮助解决该住院部的病床合理安排问题,以提高对医院 资源的有效利用。 问题一:试分析确定合理的评价指标体系,用以评价该问题的病床安排模型 的优劣。

相关文档
相关文档 最新文档