文档库 最新最全的文档下载
当前位置:文档库 › 信息率失真函数 习题答案

信息率失真函数 习题答案

信息率失真函数 习题答案
信息率失真函数 习题答案

反比例函数及典型例题

反比例函数知识点及典型例题 反比例函数这一章是初中数学的一个重点,也是初中数学的一个核心知识点。由反比例函数的图像和性质衍生出了好多数学问题,这对“数形结合”思想还有点欠缺的中学生来说无疑是一个难点。 一、反比例函数知识要点点拨 1、反比例函数的图象和性质: 反比例函数 (0)k y k x = ≠ k 的符号 0k > 0k < 图象 性质 ①x 的取值范围是0x ≠, y 的取值范围是0y ≠. ②当0k >时,函数图象的两个分支分别在第一、第三象限.在每 个象限内,y 随x 的增大而减小. ①x 的取值范围是0x ≠, y 的取值范围是0y ≠. ②当0k <时,函数图象的两个分支分别在第二、第四象 限.在每个象限内,y 随x 的增大而增大. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. 2、反比例函数与正比例函数(0)y kx k =≠的异同点: 函数 正比例函数 反比例函数 x y O x y O

解析式 (0)y kx k =≠ (0)k y k x = ≠ 图象 直线,经过原点 双曲线,与坐标轴没有交点 自变量取值范围 全体实数 0x ≠的一切实数 图象的位置 当0k >时,在一、三象限; 当0k <时,在二、四象限. 当0k >时,在一、三象限; 当0k <时,在二、四象限. 性质 当0k >时,y 随x 的增大而增大; 当0k <时,y 随x 的增大而减小. 当0k >时,y 随x 的增大而 减小; 当0k <时,y 随x 的增大而增大. 二,、典型例题 例 1 下面函数中,哪些是反比例函数? (1)3 x y -=;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k , 它也可变形为1-=kx y 及k xy =的形式,(4),(5)就是这两种形式. 例 2在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填 (正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( );

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题 知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上.

图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称 点Q也在双曲线上,作QC⊥PA的延长线于C,则有三 角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线 与双曲线的关系: 当 时,两图象没有交点; 当 时,两图象必有两个交点,且这两个交点关于原点成中心对称.

第四章_信息率失真函数-习题答案

4.1 一个四元对称信源? ?????=??????4/14/1324/14/110)(X P X ,接收符号Y = {0, 1, 2, 3},其失真矩阵为????? ???????0111 101111011110,求D max 和D min 及信源的R(D)函数,并画出其曲线(取4至5个点)。 解: 0041041041041),(min )(43041141141141),()(min min min max =?+?+?+?===?+?+?+?===∑∑i j i j i i j i i j j y x d x p D y x d x p D D 因为n 元等概信源率失真函数: ?? ? ??-??? ??-+-+=a D a D n a D a D n D R 1ln 11ln ln )( 其中a = 1, n = 4, 所以率失真函数为: ()()D D D D D R --++=1ln 13 ln 4ln )( 函数曲线: D 其中: symbol nat D R D symbol nat D R D symbol nat D R D symbol nat R D /0)(,4 3/12ln 2 14ln )(,21/3 16ln 214ln )(,41/4ln )0(,0==-==-==== 4.2 若某无记忆信源??????-=??????3/113/13/101)(X P X ,接收符号??????-=21,21Y ,其失真矩阵???? ??????=112211D 求信源的最大失真度和最小失真度,并求选择何种信道可达到该D max 和D min 的失真度。

反比例函数知识点及典型例题解析

反比例函数 知识点及考点: (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11 += x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于 x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 练习:(1)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (2)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (5)反比例函数(0k y k x = ≠) 的图象经过(—2,5, n ), 求1)n 的值; 2)判断点B (24,)是否在这个函数图象上,并说明理由 (6)已知y 与2x -3成反比例,且4 1 =x 时,y =-2,求y 与x 的函数关系式.

第四章 信息率失真函数-习题答案

4.1 一个四元对称信源? ?????=??????4/14/1324/14/110)(X P X ,接收符号Y = {0, 1, 2, 3},其失真矩阵为????? ???????0111 101111011110,求D max 和D min 及信源的R(D)函数,并画出其曲线(取4至5个点)。 解: 0041041041041),(min )(43041141141141),()(min min min max =?+?+?+?===?+?+?+?===∑∑i j i j i i j i i j j y x d x p D y x d x p D D 因为n 元等概信源率失真函数: ?? ? ??-??? ??-+-+=a D a D n a D a D n D R 1ln 11ln ln )( 其中a = 1, n = 4, 所以率失真函数为: ()()D D D D D R --++=1ln 13 ln 4ln )( 函数曲线: D 其中: sym bol nat D R D sym bol nat D R D sym bol nat D R D sym bol nat R D /0)(,4 3/12ln 2 14ln )(,21/3 16ln 214ln )(,41/4ln )0(,0==-==-==== 4.2 若某无记忆信源??????-=??????3/113/13/101)(X P X ,接收符号??????-=21,21Y ,其失真矩阵???? ??????=112211D 求信源的最大失真度和最小失真度,并求选择何种信道可达到该D max 和D min 的失真度。 4.3 某二元信源??????=??????2/12/110)(X P X 其失真矩阵为?? ????=a a D 00求这信源的D max 和D min 和R(D)

反比例函数经典题型

X Y -9 -8-7-6-5-4-3-2-1 1110987654321 -8-7-6-5-4-3-2-1 9 876543210X Y -9 -8-7-6-5-4-3-2-1 11109876543 21 -8-7-6-5-4-3-2-19 8 7 6 5 4 3 2 1 0反比例函数 一、经典内容解析 1.反比例函数的概念 (1) (k ≠0)可以写成(k ≠0)的形式,注意自变量x 的指数为-1,在解决有关 自变量指数问题时应特别注意系数k ≠0这一限制条件; (2) (k ≠0)也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的 k ,从而得到反比例函数的解析式; (3) 反比例函数 的自变量x ≠0,故函数图象与x 轴、y 轴无交点. 解析式 x k y = (k 为常数,且0k ≠) 自变量取值范围 0≠x 的实数 图 象 图象的性质 双曲线 0k > 0k < 示意图 位置 两个分支分别位于 一、三象限 两个分支分别位于 二、四象限 变化趋势 在每个象限内,y 随x 的增大而减小 在每个象限内,y 随x 的增大而增大 对称性 是轴对称图形,直线x y ±=是它的两条对称轴 是中心对称图形,对称中心为坐标原点 3.反比例函数的性质(与正比例函数对比) 函数解析式 正比例函数 y=kx (k ≠0) 反比例函数 (k ≠0) 自变量的 取值范围 全体实数 x ≠0 图 象 直线,经过原点 双曲线,与坐标轴没有交点

图象位置 (性质) 当k>0时,图象经过一、三象限;当 k<0时,图象经过二、四象限. 当k>0时,图象的两支分别位于一、三 象限;当k<0时,图象的两支分别位 于二、四象限. 性质 (1) 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小. (2) 越大,图象越靠近y轴. (1) 当k>0时,在每个象限内y随x的 增大而减小;当k<0时,在每个象限 内y随x的增大而增大. (2) 越大,图 象的弯曲度越小,曲线越平直. 注: (1) 双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论, 不能一概而论. (2) 正比例函数与反比例函数, 当时,两图象没有交点; 当时,两图象必有两个交点, 且这两个交点关于原点成中心对称. (3) 反比例函数与一次函数的联系. 4.反比例函数中比例系数k的几何意义 (1)过双曲线(k≠0) 上任意一点作x轴、y轴的垂线,所得矩形的面积为. (2)过双曲线(k≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形

反比例函数知识点及经典例题

第十七章 反比例函数 一、基础知识 1. 定义:一般地,形如x k y =(k 为常数,o k ≠)的函数称为反比例函数。x k y = 还可以写成kx y =1- 2. 反比例函数解析式的特征: ⑴等号左边是函数y ,等号右边是一个分式。分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k ⑶自变量x 的取值为一切非零实数。 ⑷函数y 的取值是一切非零实数。 3. 反比例函数的图像 ⑴图像的画法:描点法 ① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序) 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,x k y =(k 为常数,0≠k )中自变量0≠x ,函 数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。 ⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。 ⑷反比例函数x k y = (0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。 4 5. 点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数, 但是反比例函数x k y =中的两个变量必成反比例关系。 7. 反比例函数的应用二、例题 【例1】如果函数2 22 -+=k k kx y 的图像是双曲线,且在第二,四象限内,那么的值 是多少?【解析】有函数图像为双曲线则此函数为反比例函数x k y = ,(0≠k )

即kx y =1-(0≠k )又在第二,四象限内,则0>>则下列各式正确的是( ) A .213y y y >> B .123y y y >> C .321y y y >> D .231y y y >> 【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。 解法一:由题意得111x y - =,221x y -=,3 31x y -= 3210x x x >>>Θ,213y y y >>∴所以选A 解法二:用图像法,在直角坐标系中作出x y 1 -=的图像 描出三个点,满足3210x x x >>>观察图像直接得到213y y y >>选A 解法三:用特殊值法 213321321321,1,1,2 1 1,1,2,0y y y y y y x x x x x x >>∴=-=-=∴-===∴>>>令Θ 【例3】如果一次函数()的图像与反比例函数x m n y m n mx y -=≠+=30相交于点 (22 1,),那么该直线与双曲线的另一个交点为( ) 【解析】 ???==?? ???=-=+∴??? ??-=+=12132 212213n m m n n m x x m n y n mx y 解得,,相交于与双曲线直线Θ ?????== ???-=-=?? ? ? ?=+==+=∴2 21111121,122211y x y x x y x y x y x y 得解方程组双曲线为直线为 ()11--∴, 另一个点为 【例4】 如图,在AOB Rt ?中,点A 是直线m x y +=与双曲线x m y =在第一象限的交点,且2=?AOB S ,则m 的值是_____.

信息率失真函数.doc

第四章信息率失真函数(第九讲) (2课时) 主要内容:(1)平均失真和信息率失真函数(2)离散信源和连续信源的R(D)计算重点:失真函数、平均失真、信息率失真函数R(D)、信息率失真函数的计算。 难点:信息率失真函数R(D)、信息率失真函数的计算。 作业:4、lo 说明:本堂课推导内容较多,枯燥平淡,不易激发学生兴趣,要注意多讨论用途。另外,注意,解题方法。多加一些内容丰富知识和理解。 §4-1引言 (一)引入限失真的必要性: 失真在传输中是不可避免的; 接收者(信宿)无论是人还是机器设备,都有一定的分辨能力与灵敏度,超过分辨能力与灵敏度的信息传送过程是毫无意义的; 即使信宿能分辨、能判别,但对通信质量的影响不大,也可以称它为允许范围内的失真; 我们的目的就是研究不同的类型的客观信源与信宿,在给定的Qos要求下的最大允许(容忍)失真D,及其相应的信源最小信息率R(D). 对限失真信源,应该传送的最小信息率是R(D),而不是无失真情况下的信源爛H(U). 显然H(U)2R(D). 当且仅当D=0时,等号成立; 为了定量度量D,必须建立信源的客观失真度量,并与D建立定量关系; R(D)函数是限失真信源信息处理的理论基础; (二)R(D)函数的定义 信源与信宿联合空间上失真测度的定义:d (见叩:t/xV^/r[0,oo) 其屮:u*U(单消息信源空I'可) v y eV (单消息信宿空间) 则有 万=Y工〃(吧 称7为统计平均失真,它在信号空I'可屮可以看作一类“距离”,它有性质 1〉= 0,当比=Vj 2〉min 〃(吧)=°

3〉05〃(比/匕)<00 对离散信源:i=j=l,2............. n , d(upj) = djj, 则有: d 」0,当;可(无失真) 厂]〉0,当iHj (有失真) 若取冷为汉明距离,则有: Jo,当i = j (无失真) 厂[1,当iHj (有失真) 对连续信源,失真可用二元函数d(u,v)表示。 推而广之,d(u,v)可表示任何用V 表达U 时所引进的失真,误差,损失,风险,甚至是 主观感觉 上的差异等等。 进一步定义允许失真D 为平均失真的上界: D>d =工=工工〃£皿???对离散 ? ? ? ? 在讨论信息率失真函数时,考虑到信源与信宿之I'可有一个无失真信道,称它为试验信 道,对离散信源可记为p 〃,对限失真信源这一试验信道集合可定义为: P D =\P ji -D>d = YLP :P J^ 根据前面在互信息中已讨论过的性质: 1(U\ I,p ;j\ 且互信息是门的上凸函数,其极限值存在且为信道容量:C = max/(卫: p< ? 这里,我们给出其对偶定义: R(D)= mi 1Y U # ) m"pQp2,_ D P j f P D 陆 j i P D 即互信息是◎的下凸函数。其极限值存在且为信息率失真函数。 它还存在下列等效定义: D(R) = minD>d =工工门叽 < P 泸 P R i J P R = {? : /(t/;V) < R (给定速率)} 称D(R)为失真信息率函数,是R(D)的逆函数,它是求在允许最大速率情况下的最大 失真Do 至此,我们已给定R(D)函数一个初步描述。 则有: d(u. v)= (w-仍 H = \u-v

(完整版)反比例函数知识点归纳总结与典型例题

反比例函数知识点归纳总结与典型例题 (一)反比例函数的概念: 知识要点: 1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。 注意:(1)常数 k 称为比例系数,k 是非零常数; (2)解析式有三种常见的表达形式: (A )y = x k (k ≠ 0) , (B )xy = k (k ≠ 0) (C )y=kx -1 (k ≠0) 例题讲解:有关反比例函数的解析式 (1)下列函数,① 1)2(=+y x ②. 11+= x y ③21x y = ④.x y 21 -=⑤2 x y =-⑥13y x = ;其中是y 关 于x 的反比例函数的有:_________________。 (2)函数2 2 )2(--=a x a y 是反比例函数,则a 的值是( ) A .-1 B .-2 C .2 D .2或-2 (3)若函数1 1-= m x y (m 是常数)是反比例函数,则m =________,解析式为________. (4)反比例函数(0k y k x = ≠) 的图象经过(—2,5, n ), 求1)n 的值; 2)判断点B (24, (二)反比例函数的图象和性质: 知识要点: 1、形状:图象是双曲线。 2、位置:(1)当k>0时,双曲线分别位于第________象限内;(2)当k<0时, 双曲线分别位于第________象限内。 3、增减性:(1)当k>0时,_________________,y 随x 的增大而________; (2)当k<0时,_________________,y 随x 的增大而______。 4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交 5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点____________;(2)对于k 取互为相反数的两个反比例函数(如:y = x 6 和y = x 6 -)来说,它们是关于x 轴,y 轴___________。 例题讲解: 反比例函数的图象和性质: (1)写出一个反比例函数,使它的图象经过第二、四象限 . (2)若反比例函数 2 2 )12(--=m x m y 的图象在第二、四象限,则m 的值是( ) A 、 -1或1; B 、小于 1 2 的任意实数; C 、-1; D、不能确定 (3)下列函数中,当0x <时,y 随x 的增大而增大的是( ) A .34y x =-+ B .123y x =-- C .4 y x =- D .12y x =. (4)已知反比例函数2 y x -= 的图象上有两点A (1x ,1y ),B (2x ,2y ),且12x x <,

反比例函数经典习题及答案

反比例函数练习题 一、精心选一选!(30分) 1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1 y x = B .1y x -= C .2y x = D .2y x -= 2. 反 比例函数2 k y x =-(k 为常数,0k ≠)的图象位于( ) A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限 3.已知 反比例函数y = x 2 k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <2 4.反 比例函数x k y = 的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4 5.对于反比 例函数2 y x = ,下列说法不正确...的是( ) A .点(21)--,在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 6.反比 例函数 2 2)12(--=m x m y ,当x >0时,y 随x 的增大而增大,则m 的值时( ) A 、±1 B 、小于 2 1 的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。 A 、S 1<S 2<S 3 B 、S 2<S 1<S 3 C 、S 3<S 1<S 2 D 、S 1=S 2=S 3 8.在同 一直角坐标系中,函数x y 2 - =与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .0 9.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ) 10.如图,直线y=mx 与双曲线y=x k 交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ?=2,则k 的值是( ) A .2 B 、m-2 C 、m D 、 4

【免费下载】第四章 信息率失真函数 习题答案

4.1 一个四元对称信源,接收符号Y = {0, 1, 2, 3},其失??????=??????4/14/1324/14/110)(X P X 真矩阵为,求D max 和D min 及信源的R(D)函数,并画出其曲线(取4至5个点)。????????????0111101111011110解: 0041041041041),(min )(43041141141141),()(min min min max =?+?+?+?===?+?+?+?===∑∑i j i j i i j i i j j y x d x p D y x d x p D D 因为n 元等概信源率失真函数:??? ??-??? ??-+-+=a D a D n a D a D n D R 1ln 11ln ln )(其中a = 1, n = 4, 所以率失真函数为: ()()D D D D D R --++=1ln 13ln 4ln )(函数曲线: D 其中:symbol nat D R D symbol nat D R D symbol nat D R D symbol nat R D /0)(,43/12ln 214ln )(,21/316ln 214ln )(,41/4ln )0(,0==-==-====4.2 若某无记忆信源,接收符号,其失真矩阵求信??????-=??????3/113/13/101)(X P X ??????-=21,21Y ??????????=112211D 源的最大失真度和最小失真度,并求选择何种信道可达到该D max 和D min 的失真度。

4.3 某二元信源其失真矩阵为求这信源的D max 和D min 和R(D)??????=??????2/12/110)(X P X ?? ????=a a D 00函数。解:0021021),(min )(202121),()(min min min max =?+?===?+?===∑∑i j i j i i j i i j j y x d x p D a a y x d x p D D 因为二元等概信源率失真函数:??? ??-=a D H n D R ln )(其中n = 2, 所以率失真函数为: ????????? ??-??? ??-+-=a D a D a D a D D R 1ln 1ln 2ln )(4.4 已知信源X = {0, 1},信宿Y = {0, 1, 2}。设信源输入符号为等概率分布,而且失真函数,求信源的率失真函数R(D)。??????∞∞=1100D 4.5 设信源X = {0, 1, 2, 3},信宿Y = {0, 1, 2, 3, 4, 5, 6}。且信源为无记忆、等概率分布。失真函数定义为 证明率失真函数R(D)如图所示。???????∞ ======且且且且53,21 41,010),(j i j i j i y x d j i log22log2D 4.6 设信源X = {0, 1, 2},相应的概率分布p (0) = p (1) = 0.4,p (2) = 0.2。且失真函数为)2,1,0,(10),(=???≠==j i j i j i y x d j i (1) 求此信源的R(D); (2) 若此信源用容量为C 的信道传递,请画出信道容量C 和其最小误码率P k 之间的曲线关系。 4.7 设0 < α, β < 1, α + β = 1。试证明:αR(D’) +βR(D”) ≥ R(αD’ +βD”) 4.8 试证明对于离散无记忆N 次扩展信源,有R N (D) = NR(D)。其中N 为任意正整数,D ≥ D min 。 4.9 设某地区的“晴天”概率p (晴) = 5/6,“雨天”概率p (雨) = 1/6,把“晴天”预报为“雨天”,把“雨天”预报为“晴天”造成的损失为a 元。又设该地区的天气预报系统把“晴天”预报为“晴天”,“雨天”预报为“雨天”的概率均为0.9;把把“晴天”预报为“雨天”,把“雨天”预报为“晴天”的概率均为

反比例函数典型例题

反比例函数典型例题

————————————————————————————————作者:————————————————————————————————日期: ?

反比例函数的典型例题一 例 下面函数中,哪些是反比例函数? (1)3x y - =;(2)x y 8-=;(3)54-=x y ;(4)15-=x y ;(5).8 1=xy 解:其中反比例函数有(2),(4),(5). 说明:判断函数是反比例函数,依据反比例函数定义,x k y =)0(≠k ,它也可变形为1-=kx y 及k xy =的形式, (4),(5)就是这两种形式. 反比例函数的典型例题二 例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非). (1)周长为定值的长方形的长与宽的关系 ( ); (2)面积为定值时长方形的长与宽的关系 ( ); (3)圆面积与半径的关系 ( ); (4)圆面积与半径平方的关系 ( ); (5)三角形底边一定时,面积与高的关系 ( ); (6)三角形面积一定时,底边与高的关系 ( ); (7)三角形面积一定且一条边长一定,另两边的关系 ( ); (8)在圆中弦长与弦心距的关系 ( ); (9)x 越来越大时,y 越来越小,y与x的关系 ( ); (10)在圆中弧长与此弧所对的圆心角的关系 ( ). 答: 说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义. 反比例函数的典型例题三 例 已知反比例函数6 2 )2(--=a x a y ,y 随x 增大而减小,求a 的值及解析式. 分析 根据反比例函数的定义及性质来解此题. 解 因为6 2 )2(--=a x a y 是反比例函数,且y 随x的增大而减小, 所以???>--=-.02, 162a a 解得???>±=. 2,5a a 所以5=a ,解析式为x y 2 5-= . 反比例函数的典型例题四

第4章 信息率失真函数

第四章 信息率失真函数 无失真信源编码和有噪信道编码告诉我们:只要信道的信息传输速率 R 小于信道容量 C ,总能找到一种编码方法,使得在该信道上的信息传输的差错概率 P e 任意小;反之,若信道的信息传输速率大于信道容量,则不可能使信息传输差错概率任意小。但是,无失真的编码并非总是必要的。无失真的编码并非总是可能的。在实际信息传输系统中,失真是不可避免的,有时甚至是必须的。 香农首先定义了信息率失真函数R(D),并论述了关于这个函数的基本定理。定理指出:在允许一定失真度D 的情况下,信源输出的信息传输率可压缩到R(D)值,这就从理论上给出了信息传输率与允许失真之间的关系,奠定了信息率失真理论的基础。信息率失真理论是进行量化、数模转换、频带压缩和数据压缩的理论基础。 本章主要介绍信息率失真理论的基本内容,侧重讨论离散无记忆信源。首先给出信源的失真度和信息率失真函数的定义与性质;然后讨论离散信源和连续信源的信息率失真函数计算;在这基础上论述保真度准则下的信源编码定理。 1 失真测度 1.1 失真度 从直观感觉可知,若允许失真越大,信息传输率可 越小;若允许失真越小,信息传输率需越大。所以信息传输率与信源编码所引起的失真(或误差)是有关的。 离散无记忆信源U ,信源变量U ={u1,u2,…ur},概率分布为P(u)=[P(u1),P(u2),…P(ur)] 。 信源符号通过信道传输到某接收端,接收端的接收变量V = {v1,v2,…vs} 。 对应于每一对(u,v),我们指定一个非负的函数: 称为单个符号的失真度(或失真函数)。 通常较小的d 值代表较小的失真,而d(ui,vj)=0表示没有失真。 若信源变量U 有r 个符号,接收变量V 有s 个符号,则d(ui,vj)就有r ×s 个,它可以排列成矩阵形式,即: 它为失真矩阵D ,是 r ×s 阶矩阵。 须强调: 这里假设U 是信源,V 是信宿,那么U 和V 之间必有信道。实际这里U 指的是原始的未失真信源,而V 是指失真以后的信源。因此,从U 到V 之间实际上是失真算法,所以这里的转移概率p(vj/ui)是指一种失真算法,有时又把p(vj/ui) 称为试验信道的转移概率,如图所示: j i j i v u d j i ≠=???>=)0(0),(α????????????=),(...),(),(:...::),(...),(),(),(...),(),(212221212111s r r r s s v u d v u d v u d v u d v u d v u d v u d v u d v u d D

反比例函数经典例题

反比例函数难题 1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P 2、P3…P n都在函数y=4 x (x>0)的图象上,斜边OA1、A1A2、A2A3…A n-1A n都在x轴上.则点A10的坐标为 2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函 数y=k x 的图象上. (1)求AB的长; (2)当矩形ABCD是正方形时,将反比例函数y=k x 的图象沿y轴翻折,得到反比例函数y= 1 k x 的图象(如 图2),求k1的值; (3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线 y=k x 于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明 理由.

1.已知反比例函数y= 2k x 和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点. (1)求反比例函数的解析式; (2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式 2k x >2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.

1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y = x m (m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =4 5 . (1)求该反比例函数和一次函数; (2)求△AOC 的面积.

反比例函数知识点总结典型例题大全

. 反比例函数 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA 的面积是(三角形PAO和三角形PBO的面积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个 分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称 (3)反比例函数与一次函数的联系.

信息率失真函数

第四章 信息率失真函数(第九讲) (2课时) 主要内容:(1)平均失真和信息率失真函数(2)离散信源和连续信源的R(D)计算 重点:失真函数、平均失真、信息率失真函数R(D)、信息率失真函数的计算。 难点:信息率失真函数R(D)、信息率失真函数的计算。 作业:4、1。 说明:本堂课推导内容较多,枯燥平淡,不易激发学生兴趣,要注意多讨论用途。另外,注意,解题方法。多加一些内容丰富知识和理解。 §4-1 引言 (一) 引入限失真的必要性: 失真在传输中是不可避免的; 接收者(信宿)无论是人还是机器设备,都有一定的分辨能力与灵敏度,超过分辨能力与灵敏度的信息传送过程是毫无意义的; 即使信宿能分辨、能判别,但对通信质量的影响不大,也可以称它为允许范围内的失真; 我们的目的就是研究不同的类型的客观信源与信宿,在给定的Qos 要求下的最大允许(容忍)失真D ,及其相应的信源最小信息率R(D). 对限失真信源,应该传送的最小信息率是R(D),而不是无失真情况下的信源熵H(U). 显然 H(U)≥R(D). 当且仅当 D=0时,等号成立; 为了定量度量D ,必须建立信源的客观失真度量,并与D 建立定量关系; R(D)函数是限失真信源信息处理的理论基础; (二) R(D)函数的定义 信源与信宿联合空间上失真测度的定义:()i j d u v : [0,)U V R + ?→∞ 其中: i u U ∈ (单消息信源空间) j v V ∈ (单消息信宿空间) 则有 ()()i j i j i j u v d p u v d u v =∑∑ 称d 为统计平均失真,它在信号空间中可以看作一类“距离”,它有性质 1〉()0i j d u v =, 当i j u v = 2〉 ,()0min i j i j u U v V d u v ∈∈=

反比例函数难题(含答案)

反比例函数典型例题 1、(2011?宁波)正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y= x 2(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y=x 2(x >0)的图象上,顶点A 2在x 轴的正半轴上,则P 2点的坐标为___________,则点P 3的坐标为__________。 答案:P 2(2,1) P 2(3+1,3-1) 2、已知关于x 的方程x 2+3x+a=0的两个实数根的倒数和等于3,且关于x 的方程(k-1)x 2+3x-2a=0有实根,且k 为正整数,正方形ABP 1P 2的顶点P 1、P 2在反比例函数y= x 1k +(x >0)图象上,顶点A 、B 分别在x 轴和y 轴的正半轴上,求点P 2的坐标. 答案:(2,1)或(6,2 6) 3、如图,正方形OABC 和正方形AEDF 各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为2. (1)求反比例函数的解析式;(2)求点D 的坐标. 答案:(1) y= x 4 (2) (15+,1-5) 4、两个反比例函数y=x 3,y=x 6在第一象限内的图象如图所示,点P 1、P 2在反比例函数图象上,过点P 1作x 轴的平行线与过点P 2作y 轴的平行线相交于点N ,若点N (m ,n )恰好在y=x 3的图象上,则NP 1与NP 2的乘积是______。 答案:3

答案:3 5、(2007?泰安)已知三点P 1(x 1,y 1),P 2(x 2,y 2),P 3(1,-2)都在反比例函数y=x k 的图象上,若x 1<0,x 2>0,则下列式子正确的是( )答案:D A .y 1<y 2<0 B .y 1<0<y 2 C .y 1>y 2>0 D .y 1>0>y 2 6、如图,已知反比例函数y=x 1的图象上有点P ,过P 点分别作x 轴和y 轴的垂线,垂足分别为A 、B ,使四边形OAPB 为正方形,又在反比例函数图象上有点P 1,过点P 1分别作BP 和y 轴的垂线,垂足分别为A 1、B 1,使四边形BA 1P 1B 1为正方形,则点P 1的坐标是________。 答案:???? ??+21-5215, 7、在反比例函数y=x 1(x >0)的图象上,有一系列点P 1、P 2、P 3、…、Pn ,若P 1的横坐标为2,且以后每点的横坐标与2.现分别过点P 1、P 2、P 3、…、Pn 作x 轴与y 轴的垂线段,构成若干个长方形如图所示,将图中阴影部分的面积从左到右依次记为S 1、S 2、S 3、…、Sn ,则S 1+S 2+S 3+…+S 2010=________。 答案:1 8、如图,四边形ABCD 为正方形,点A 在x 轴上,点B 在y 轴上,且OA=2,OB=4,反比例函数y=x k (k ≠0)在第一象限的图象经过正方形的顶点D . (1)求反比例函数的关系式; (2)将正方形ABCD 沿x 轴向左平移_____个单位长度时,点C 恰好落在反比例函数的图象上.

苏教版八年级下学期_反比例函数_知识要点及典型例题专项训练

第9章 反比例函数 【知识要点】 1.反比例函数:一般地,形如:x k y =(k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是x 的函数,k 是比例系数. 反比例函数有三种表示形式: 、 、 选 2.反比例函数图象及画法:一般地,反比例函数x k y = (k 为常数,k ≠0)的图象是由两个分支组成的,是双曲线.这两个分支分别位于第一、三象限或第二、四象限. 双曲线两个分支关于原点对称,由于反比例函数中,自变量x ≠0,函数值y ≠0,所以它的图象与 x 轴和y 轴都没有交点,即双曲线的两个分支无限地接近坐标轴,但永远不与坐标轴相交. 反比例函数图象既是以直线 和直线为对称轴的轴对称图形;又是是以 为对称中心的中心对称图形。过原点任意画一条直线,与两个分支交于两点,则这两个交点是关于 对称的,即若一个交点是)(b a P ,,则另一个交点是 . 画反比例函数的图象的基本步骤为: ① 列表;描点;③ 连线. 选3.反比例函数性质: (1)反比例函数图象的位置和函数值的增减性都是由比例系数k 来确定的: ① 当 k >0时, x ,y 同号,图象在第一、三象限,在每一个象限内,由左至右呈下降趋势,y 随x 的增大而减小; ② 当 k <0时, x ,y 异号,图象在第二、四象限,在每一个象限内,由左向右呈上升趋势,y 随x 的增大而增大. (2 ,否则,若笼统地说:“当k >0时,y 随x 的增大而减小”,就会出现与事实不符的错误,如函数x y =,当x 2-=时,y 3-=;当 x=2 时,y=3 .显然不是y 随x 的增大而减小. 选 4.求反比例函数关系式的基本方法. (1)待定系数法是最基本的方法; (2)若已知两个函数的交点,可把交点坐标直接代入关系式;

相关文档