文档库 最新最全的文档下载
当前位置:文档库 › (整理)立体几何证明的向量公式和定理证明11453

(整理)立体几何证明的向量公式和定理证明11453

高考数学专题——立体几何

遵循先证明后计算的原则,即融推理于计算之中,突出模型法,平移法等数学方法。注重考查转化

与化归的思想。

立体几何证明的向量公式和定理证明

θ

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第七节 立体几何中的向量方法

第七节 立体几何中的向量方法 一、空间向量与平行关系 【知识点11】直线的方向向量与平面的法向量 (1)直线的方向向量的定义 直线的方向向量是指和这条直线平行或共线的非零向量,一条直线的方向向量有无数个. (2)平面的法向量的定义 直线l ⊥α,取直线l 的方向向量a ,则a 叫做平面α的法向量. 注:直线的方向向量(平面的法向量)不唯一? 【例1】如图3,已知ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =1 2 ,试建立适当的坐标系. (1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量. 【反思】1.利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z). (2)选向量:在平面内选取两个不共线向量,. (3)列方程组:由列出方程组. (4)解方程组: (5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量. 2.求平面法向量的三个注意点 (1)选向量:在选取平面内的向量时,要选取不共线的两个向量. (2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的

一个法向量. (3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为0. [练习1]正方体ABCD­A1B1C1D1中,E、F分别为棱A1D1、A1B1的中点,在如图3­2­2所示的空间直角坐标系中,求: 图3­2­2 (1)平面BDD1B1的一个法向量; (2)平面BDEF的一个法向量.

立体几何中的向量方法——证明平行及垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量, 则求法向量的方程组为??? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )

高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ????ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a ρ 平行于b ρ,记作 b a ρ ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ =λb ρ。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x y x 其中 (4)与共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数 ,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x z y x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题 1.用向量方法证明空间中的平行关系 (1)证明线线平行 设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m?□01a∥b?□02 a=λb?□03a1=λa2,b1=λb2,c1=λc2(λ∈R). (2)证明线面平行 设直线l的方向向量为a=(a1,b1,c1), 平面α的法向量为u=(a2,b2,c2), 则l∥α?□04a⊥u?□05a·u=0?□06a1a2+b1b2+c1c2=0. (3)证明面面平行 ①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β?□07u∥v?u=λv?□08a1=λa2,b1=λb2,c1=λc2(λ∈R). ②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可. 2.用向量方法证明空间中的垂直关系 (1)证明线线垂直 设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2?□09u1⊥u2?□10u1·u2=0?□11a1a2+b1b2+c1c2=0. (2)证明线面垂直 设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α?□12 u∥v?□13u=λv(λ∈R)?□14a1=λa2,b1=λb2,c1=λc2(λ∈R). (3)证明面面垂直 若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β?□15u ⊥v?□16u·v=0?□17a1a2+b1b2+c1c2=0. 1.判一判(正确的打“√”,错误的打“×”) (1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( ) (2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )

立体几何中的向量方法(一)证明平行与垂直

立体几何中的向量方法(一)证明平行与垂直【考点梳理】 1.直线的方向向量和平面的法向量 (1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量. (2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量. 2.空间位置关系的向量表示 位置关系向量表示 直线l1,l2的方向向量分 别为n1,n2l1∥l2n1∥n2⇔n1=λn2 l1⊥l2n1⊥n2⇔n1·n2=0 直线l的方向向量为n,平面α的法向量为m l∥αn⊥m⇔n·m=0 l⊥αn∥m⇔n=λm 平面α,β的法向量分 别为n,m α∥βn∥m⇔n=λm α⊥βn⊥m⇔n·m=0 【考点突破】 考点一、利用空间向量证明平行问题 【例1】如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD =22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC. 证明:PQ∥平面BCD. [解析]法一如图,取BD的中点O,以O为原点,OD,OP所在射线分别为y,z轴的正半轴,建立空间直角坐标系O-xyz. 由题意知,A(0,2,2),B(0,-2,0),D(0,2,0). 设点C的坐标为(x0,y0,0).

因为AQ →=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34 x 0,24+34y 0,12. 因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛ ⎭⎪⎫0,0,12, 所以PQ →=⎝ ⎛⎭ ⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ → ·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD . 法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y ,0),则 (x -x 0,y -y 0,0)=1 4(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+3 4y 0,∴OF →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0 又由法一知PQ →=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF →=PQ →,∴PQ ∥OF . 又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .

空间向量与立体几何知识总结(高考必备!)

y k i A(x,y,z) O j x z 辅导科目:数学 授课教师: 全国章 年级: 高二 上课时间: 教材版本:人教版 总课时: 已上课时: 课时 学生签名: 课 题 名 称 教 学 目 标 重点、难点、考点 教学步骤及内容 空间向量与立体几何 一、空间直角坐标系的建立及点的坐标表示 空间直角坐标系中的坐标:如图给定空间直角坐标系和向量a ,设,,i j k (单位正交基底) 为坐标向量,则存在 唯一的有序实数组123(,,)a a a ,使123a a i a j a k =++ ,有序实数组123(,,)a a a 叫作向量a 在 空间直角坐标系O xyz -中的坐标,记作123(,,)a a a a = .在空间直角坐标系O xyz -中, 对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使O A xi yj z k =++ ,有序实数组 (,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标. 二、空间向量的直角坐标运算律 (1)若123(,,)a a a a = ,123(,,)b b b b = , 则112233(,,)a b a b a b a b +=+++ , 112233(,,)a b a b a b a b -=--- ,123(,,)()a a a a R λλλλλ=∈ , 112233//,,()a b a b a b a b R λλλλ?===∈ , (2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =--- . 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 (3)//a b b a λ?= 11 223 3()b a b a R b a λλλλ=?? ?=∈??=? 三、空间向量直角坐标的数量积 1、设b a ,是空间两个非零向量,我们把数量>

立体几何常见证明方法

立体几何方法归纳小结 一、线线平行的证明方法 1、根据公理4,证明两直线都与第三条直线平行。 2、根据线面平行的性质定理,若直线a 平行于平面A ,过a 的平面B 与平面A 相交于b ,则 a//b 。 3、根据线面垂直的性质定理,若直线a 与直线b 都与平面A 垂直,则a//b 。 4、根据面面平行的性质定理,若平面A//平面B ,平面C 与平面A 和平面B 的交线分别为直线 a 与直线 b ,则a//b 。 5、由向量共线定理,若AB xCD ,且AB 、CD 不共线,则向量AB 所在的直线a 与向量cd 所在的直线b 平行,即a//b 。 二、线面平行的证明方法 1、根据线面平行的定义,证直线与平面没有公共点。 2、根据线面平行的判定定理,若平面 A 内存在一条直线b 与平面外的直线a 平行,则a//A 。 (用相似三角形或平行四边形) 3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。 4、向量法,向量c 与平面A 法向量垂直,且向量c 所在直线c 不在平面内,则c//A 。 三、面面平行的证明方法 1、根据定义,若两平面没有公共点,则两平面平行。 2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。 或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。 3、垂直同一直线的两平面平行。

4、平行同一平面的两平面平行。 5、向量法,证明两平面的法向量共线。 四、两直线垂直的证明方法 1、根据定义,证明两直线所成的角为90° 2、一直线垂直于两平行直线中的一条,也垂直于另一条. 3、一直线垂直于一个平面,则它垂直于平面内的所有直线. 4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线). 5、向量法. 五、线面垂直的证明方法 1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面. 2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面. 3、一直线垂直于两平行平面中的一个,也垂直于另一个. 4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面. 5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面. 6、向量法,证明平面的法向量与表示该直线的向量共线. 六、面面垂直的证明方法 1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。 2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。 3、一平面垂直于两平行平面中的一个,也垂直于另一个。 4、向量法,证明两平面的法向量垂直(即法向量的数量积为零)。

立体几何公式大全

立体几何公式大全 向量式 cos a b =⋅a b λ=(0,λ>方向相同0,λ<方向相反模a 2 a a = a b ⋅ 求异面直线a 与b 122221a b x x y a b x θ⋅+= ⋅+a n a n ⋅⋅(为平面α的法向量的夹角:则1212 cos n n n θ=⋅:求二面角

1212 n n ⋅ ;三、定:同锐相等:若θ;同钝相等:若θAP n n ⋅ 三、求法向量步骤: (1) 设法向量(,,)n x y z =,利用法向量n 与平面上的两相交直线方向向量垂直数量 积为0建立两个方程; (2) 求出x 等于多少z, y 等于多少z;并令z=1进而求出x,y,从而得到法向量n ; 或者求出x 等于多少y, z 等于多少y;并令y=1进而求出x,z,从而得到法向量 n ; 或者求出y 等于多少x, z 等于多少x;并令x=1进而求出y,z,从而得到法向量 n ; (3) 把所求的法向量n 代入方程组检验! 四、法向量n 的在证明题中用处:

(1) 线面平行:l l n α⊄⊥平面且⇔//l α平面:参见JP65/例2 (证明线面平行问题只要转成去求线的向量与法向量数量积为0即可) (2) 面面平行:12//n n ⇔//αβ平面平面:参见JP65/例2 (证明面面平行问题只要转成去证两个法向量存在一个倍数关系问题即可) (3) 线面垂直://l n l α⇔⊥平面: (证明线面垂直问题只要转成求证线的向量与法向量存在一个倍数关系即可) (4) 面面垂直:12n n ⊥⇔αβ⊥平面平面:参见JP65/例3

(证明面面垂直问题只要转成去求两法向量数量积为0即可) (整理不易,望同学们好好珍惜利用!) 友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!

立体几何基本定理与公式

立几基本公式 空间直线。 1。 空间直线位置分三种:相交、平行、异面. 相交直线—共面有且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内 2。 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线) 3。 平行公理:平行于同一条直线的两条直线互相平行。 4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图)。 (二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ) (斜线与平面成角() 90,0∈θ) (直线与平面所成角[] 90,0∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等。 5。 两异面直线的距离:公垂线的长度。 一、直线与平面平行、直线与平面垂直. 1。 空间直线与平面位置分三种:相交、平行、在平面内。 2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行。(“线线平行,线面平行”) 3。 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(“线面平行,线线平行”) 4。 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面 垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO 。 因为a ⊥PO ,但PO 不垂直OA . ● 三垂线定理的逆定理亦成立。 直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面。(“线线垂直,线面垂直”) 直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 推论:如果两条直线同垂直于一个平面,那么这两条直线平行。 5. ⑴垂线段和斜线段长定理:从平面外一点.. 向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线 段射影较长;③垂线段比任何一条斜线段短. ⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射12方向相同12方向不相同P O A a

空间向量在立体几何中的应用

空间向量在立体几何中的应用 【考纲说明】 1. 能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题; 2. 会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题; 3. 培养用向量的相关知识思考问题和解决问题的能力; 知识梳理】 、空间向量的运算 1、向量的几何运算 1)向量的数量积: 已知向量,则叫做的数量积,记作 空间向量数量积的性质:① ; ②; ③ . 2)向量共线定理:向量a r a r r r r 0 与b 共线,当且仅当有唯一一个实数,使b 2、向量的坐标运算 (1)若,,则. 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 2)若,,则 ,, 3)夹角公式:

(4)两点间的距离公式:若,,则 二、空间向量在立体几何中的应用 2. 利用空间向量证明平行问题 对于平行问题,一般是利用共线向量和共面向量定理进行证明. 3. 利用空间向量证明垂直问题 对于垂直问题,一般是利用进行证明; 4. 利用空间向量求角度 1)线线角的求法: 设直线AB、CD对应的方向向量分别 为 a、b,则直线AB与CD所成的角为(线线角的范围[0 0,90 0])2)线面角的求法: (3)二面角的求法:设n1, n2 分别是二面角其补角的大小 (如图) 5. 利用空间向量求距离 1)平面的法向量的求法: 设n=(x,y,z),利用n 与平面 内的两个不共线的向a, b 垂 直,其数量积为零,列出两个三 元一次方程,联立后取 设n 是平面的法向量,是直线的方向向量,则直线与平面所成的角为其一组解,即得到平面的一个法向量(如图)就是二面角的平面角或 的两个面

8.7空间向量在立体几何中的应用——证明平行与垂直

1.用向量表示直线或点在直线上的位置 (1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP → =t a ,则此向量方程叫做直线l 以t 为参数的参数方程.向量a 称为该直线的方向向量. (2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP →=(1-t )OA →+tOB → ,叫做空间直线的向量参数方程. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × ) (2)平面的单位法向量是唯一确定的.( × ) (3)若两平面的法向量平行,则两平面平行.( √ ) (4)若两直线的方向向量不平行,则两直线不平行.( √ ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( × )

2023年新高考数学一轮复习8-8 立体几何综合问题(知识点讲解)含详解

专题8.8 立体几何综合问题(知识点讲解) 【知识框架】 【核心素养】以几何体为载体,考查空间几何体中的最值问题、折叠问题以及探索性问题,凸显直观想象、数学运算、 逻辑推理的核心素养. 【知识点展示】 (一)空间向量的概念及有关定理 1.空间向量的有关概念 2. (1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb. (2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序 实数对(x,y),使p=x a+y b. (3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z}, 使得p=x a+y b+z c,其中,{a,b,c}叫做空间的一个基底. (二)空间向量的坐标表示及运算 (1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),

则①a ±b =(a 1±b 1,a 2±b 2,a 3±b 3); ②λa =(λa 1,λa 2,λa 3); ③a ·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R), a ⊥ b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23, cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则||(AB d AB a ==(三)异面直线所成的角 ①定义:设a ,b 是两条异面直线,过空间任一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做a 与b 所成的角. ②范围:两异面直线所成角θ的取值范围是(0,]2π . ③向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos |cos || ||||| a b a b θϕ⋅==⋅. (四)直线与平面所成角 直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n | . (五) 二面角 (1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.

空间向量与立体几何知识点

空间向量与立体几何知 识点 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ⋅<>= ⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题.

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈ 运算律:⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a 平行于b ,记作 b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。 (3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为a a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数 ,x y 使p xa yb =+。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数

空间向量与立体几何知识点和习题(含答案)

空间向量与立体几何 【知识要点】 1.空间向量及其运算: (1)空间向量的线性运算: ①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立. ②空间向量的线性运算的运算律: 加法交换律:a +b =b +a ; 加法结合律:(a +b +c )=a +(b +c ); 分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b . (2)空间向量的基本定理: ①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b . ②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b . ③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c . (3)空间向量的数量积运算: ①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉; ②空间向量的数量积的性质: a ·e =|a |c os <a ,e >;a ⊥ b ⇔a ·b =0; |a |2=a ·a ;|a ·b |≤|a ||b |. ③空间向量的数量积的运算律: (λ a )·b =λ (a ·b ); 交换律:a ·b =b ·a ; 分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示: ①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3). ②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则 a + b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3); λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3. ③空间向量平行和垂直的条件: a ∥ b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R ); a ⊥ b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. ④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则 ;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a

高三数学新课标总复习立体几何-理科-向量的用法

【新知识梳理与重难点点睛】 1.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定量 对空间任意两个向量a ,b (b ≠0),b 与a 共线的充要条件是存在实数λ,使得b =λa . 推论 如图所示,点P 在l 上的充要条件是:OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →=OA →+tAB →或OP →=(1-t )OA →+tOB → . (2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA → +yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB → ,其中x +y +z =1. (3)空间向量基本定理 如果三个向量e 1,e 2,e 3不共面,那么对空间任一向量p ,存在惟一的有序实数组(x ,y ,z ),使得p =x e 1 +y e 2+z e 3. 2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a , b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π 2 ,则称a 与b 互相垂直,记作a⊥b. ②两向量的数量积 已知空间两个非零向量a ,b 则|a||b|cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b 即a·b =|a||b|cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ; ③分配律:a ·(b +c )=a ·b +a ·c . 3.空间向量的坐标表示及应用 (1)数量积的坐标运算

相关文档 最新文档