文档库 最新最全的文档下载
当前位置:文档库 › 数学期望的应用

数学期望的应用

数学期望的应用
数学期望的应用

数学期望的应用

【摘要】在现代快速发展的社会中,数学期望作为一门重要的数学学科。数学期望简称期望,又称均值,是概率统计中一项重要的数字特征,它代表了随机变量取值的平均水平。在理论研究和实际问题解决方面有着广泛的应用,许多问题都可以直接或间接的利用数学期望来解决。本文通过探讨数学期望在现实生活中的一些常见问题的应用,进而更清楚的认识到数学期望的广泛的应用以及它的重要性的所在。

【关键词】数学期望立法立法原则立法过程投资理财分析决策盈利最高科

学方法

生活中的应用

一、在立法中的运用

一部法律调节着一个领域内相关主体的权利与义务等社会关系,因此我们可以认为法律是反映了这一领域内的一般结论和基本规律的,那么我们也就可以认为法律是其所调节领域的数学期望,可称之为立法期望。

首先,立法主体要有立法的意思,从而使立法期望的产生有其可能性。然后由相关的机构去准备法案,召集具备相当研究力的院校、研究所等提出相关法律的草案,我们可以将这些草案看为所有大专院校、研究所等机构提出的草案这个虚总体的一个样本。为了保证法律的适时性、科学性。我们对组成样本的个体在地域上、结构上要有合理的安排,以确保代表虚总体。接着,相关机构会再对这个样本进行整理,从法律原则、法律体例、法律规范、法的完整性等方面进行协调、归纳,并最终得出一个草案。这个草案可以认为是初定立法期望。最后,在得出这个法案后,相关机构会再将这个草案发放给各大专院校、研究所等机构以及该法案所涉及的主体,可以将这些被发放对象的组成定义为发放样本,由被发放对象提出相关的意见和建议。在选定发放样本时也要合理的安排好结构、数量,并充分考虑到学术流派、学术力的等级、民族、性别、年龄、文化程度、区域、经济水平等因素,以期符合发放虚总体的意志。最后由相关机构将意见与建议收集,并结合初定立法期望进行整理,对初定立法期望的有关内容进行改进与调整,

并得出最终法案,提交全国人大或全国人大常委会。

通过上面论述,将数学期望等知识运用于立法,不仅可以集思广益,还可以促进学术界的发展,更利于法律在全国范围内的宣传、推广与执行。

二、资金投资问题

投资理财的目的是利用手中闲散货币进行货币再生,即所谓的“钱生钱”.

在现实生活中投资有很多种方式,如债券,股票,期货,保险,存入银行,房地产等等,这些都属于投资理财问题。在现今全球金融危机的新形势下如何有效的使货币增值,某些方面可以利用数学期望来进行分析说明.

某投资者有10万元,现有两种投资方案:一是购买股票,二是存人银行获取利息。买股票的收益主要取决于经济形势,假设可分三种状态:形势好、形势中等、形势不好(即经济衰退)。若形势好可获利40000元;若形势中等可获利10000元;若形势不好要损失20000元.如果是存人银行,假设年利率为8%,即可得利息8000元.又设年经济形势好、中等、不好的概率分别为30%,50%和20%。试问该投资者应选择哪一种投资方案?

分析:购买股票的收益与经济形势有关,存入银行的收益与经济形势无关.因此,要确定选择哪一种方案,就必须通过计算这两种投资方案对应的收益期望值E 来进行判断。

解:由题设可知,一年中两种投资方式在不同的经济形势下对应的收益与概率如下表所示: 购买股票

状态

经济形势好 经济形势中等 经济形势不好 收益

40000 10000 -20000 概率

0.3 0.5 0.2

存入银行

状态

经济形势好 经济形势中等 经济形势不好 收益

8000 8000 8000 概率

0.3 0.5 0.2

从上表可以初步看出,如果购买股票在经济形势好和经济形势中等的情况下是合算的,但如果经济形势不好,则采取存人银行的方案比较好下面通过计算加以分析.

如果购买股票,其收益的期望值

()1E =40000031000005200000213000()

?+?-?=..十.元; 如果存人银行,其收益的期望值

2E =8000038000058000028000()?+?+?=...元。

因此,购买股票的收益比存入银行的收益大,按期望收益最大原则,应选择购买股票.该题是按风险决策中的期望收益最大准则选择方案,这种作法有风险

存在。

三、决策方案问题

决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。例如:

某工程队计划承包一项工程。若三天完成可获利8000元,四天完成可5000元,五天完成要被罚款10000元。由以往经验知,该工程队三天、四天、五天完成此项工程的概率分别为0.3、0.5、0.2,获利金额的概率分布见下表。

X(元) 8000 5000 -10000 p 0.3 0.5 0.2

问,如果你是经理,愿意承包这项工程吗?计算出利润的数学期望就知道答案了。承包此项工程获利的数学期望是:8000×0.3+5000×0.5-10000×0.2=2900元就是说,虽然有被罚款的可能,但平均说来,承包这样的工程是可以获利的

四、天气预测问题

自然生活中的天气状况是随机变化的,天气预报是根据气象观(探)测资料,应用天气学、动力学、统计学的原理和方法,对某区域或某地点未来一定时段的天气状况作出定性或定量的预测.在一些重大的工程或计划中,人们往往要考虑天气状况,而在某些方面天气甚至起到决定性的作用.怎样根据天气预测来决定重要事项或计划是否执行也是人们值得思考的问题,下文中例将很好的说明这一点.

2008年9月25日,我国自行研制的神舟七号载人飞船顺利升空,并首次完成宇航员出舱活动任务,为我国的航天事业又增添了辉煌的一笔.我国航天水平一直居于世界先进行列,运载火箭升空的成功率高达98%以上.这其中不可或缺的是众多科研人员对天气的把握,因为天气是运载火箭升空成功与否的一个关键因素,其必须满足:(1)无降水(2)地面风速小于每秒8米(3)水平能见度大于20公里(4)发射前8小时至发射后1小时,场区30公里至40公里范围内无雷电活动(5)火箭发射所经过空域3公里至18公里高空最大风速小于每秒70米.同时必须当这些条件的综合准确性系数达到90以上时,运载火箭才可发射,否则必须等待适合天气,择日发射.根据天气预测以及相关科研人员的统计调查得知酒泉卫星发射中心当天天气满足这些条件的概率和准确性系数如下表所示:

无降水地面风速

小于每秒

8米能见度大

于20公里

无雷电

活动

高空风速

小于每秒

70米

概率0.96 0.94 0.95 0.98 0.94 准确性系

98 96 97 99 95 那么由此便可知当天发射运载火箭的期望可准确性系数为:

980.96960.94970.95990.98950.9492.5885E ?+?+?+?+?==

在9月25日发射运载火箭可行性系数较高,符合发射必须要求.

现实生活中诸如此类重大工程或事项必须要考虑天气状况的有很多,比如抗震救灾、奥运会开幕式,还有商场举行露天促销活动等等,这些都对天气有所要求,需要根据各种天气状况出现的概率进行期望统计分析,做出最佳的决策。

五、体育比赛问题

乒乓球是我们的国球,上世界兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。赛制有两种,一种是双方各出3人, 三场两胜制, 一种是双方各出5人,五场三胜制, 哪一种赛制对中国队更有利?下面,我们利用数学期望解答这个问题。由于中国队在这项比赛中的优势,我们不妨设中国队中每一位队员德国队员的胜率都为60%。根据前面的分析,下面我们只需要比较两个队对应的数学期望即可。

在五场三胜制中,中国队要取得胜利, 获胜的场数有3、4、5三种结果。我们计算三种结果对应的概率。应用二项式定理可知,恰好获胜三场(即其中两场失利)对应的概率:3456.0)6.01()6.0(2335

=-c ; 恰好获胜四场对应的概率为:

2592.0)6.01()6.0(1445c =-; 五场全部获胜的概率为:07776.0)6.01()6.0(0

55

5c =- 。 设随机变量为x 为为该赛制下中国队在比赛中获胜的场数,则可建立x 分布律:

X 3 4 5

P 0.3456 0.2592 0.07776

计算随机变量X 的数学期望:

E (X ) = 3?0. 346 5 + 4?0. 259 2 + 5?0. 077 76= 2.465 1。在三场两胜制中,中国队取得胜利,,获胜的场数有2、3两种结果。对应的概率分别为:恰好获胜两场(其中有一场失利)对应的概率:

432.0)6.01()6.0(223=-c ; 三场全部获胜的概率为:216.0)6.01()6.0(0333c =-

设随机变量Y 为该赛制下中国队在比赛中获胜的场数, 则可建立Y 的分布律:

Y 2 3

P 0.432 0.216

E ( Y) = 2?0. 432+ 3?0. 216= 1. 512

比较两个期望值得:E (X ) > E ( Y)。所以我们可以得出结论,五场三胜制对中国队更有利。

结语

数学期望是反映随机变量总体取值平均水平的一个重要的数字特征,而在现实社会中由于不确定因素太多,加上相关竞争太严重,因此人们在做决策时就会相当谨慎,常常会在多个决策中找出最好的一个方案。数学期望则成为了决策者们首选的一个帮助决策的科学方法。一般可以这样认为,当涉及概率统计和决策时,往往会利用到数学期望理论,因为我们很难去探究一些随机变量的变量分布,例如在经济决策性问题当中,而转用概率统计中的数学期望这一特征数字可使问题简化.但数学期望只是代表随机变量的平均取值,在实际问题中往往也用到要结合概率统计中其他数字特征才能更好的解决问题;只有将理论适当的应用,才能真正做到理论联系实际

参考文献

[1] 张文显《法理学》北京高等教育出版社 1999版 235页

[2] 陈卫东.离散型随机变量的数学期望在法律、医学和经济等问题中的应用[J].广东广播电视大学学报,2005,12.

[3] 林侗芸.利用数学期望求解经济决策问题.龙岩学院报.2006.12

数学期望的计算及应用

数学期望的计算及应用 数学与应用数学111 第四小组 引言: 我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即∑∞ == 1 )(k k k p x X E ;2. 应用随机变量函数的期望公式 ∑∞ ==1 )())((k k k p x q x q E 3. 利用期望的有关性质。但是还是会碰到许多麻烦,这里我们将 介绍一些解决这些难题的简单方法。在现实生活中,许多地方都需要用到数学期望。如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。 下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。 1. 变量分解法 ] 1[ 如果可以把不易求得的随机变量X 分解成若干个随机变量之和,应用)(...)()()...(2121n n X E X E X E E E X E ++=++再进行求解得值, 这种方法就叫做变量分解法。这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。 例题1 : 从甲地到乙地的旅游车上载有20位旅客,自甲地开出,沿途有10个车站,如到达一个车站没有旅客下车,就不停车,以X 表示停车次数,求E(X).(设每位旅客在各个车站下车是等可能的) 分析 : 汽车沿途10站的停车次数X 所以可能取值为0,1,….,10,如果先求出X 的分布列,再由定义计算E(X),则需要分别计算{X=0},{X=1},…,{X=10}等事件的概率,计算相当麻烦。注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1对应起来,映入随机变量i X 每一种结果的概率较易求得。把X 分解成若干个随机变量i X 之和,然后应用公式)(...)()()...(2121n n X E X E X E E E X E ++=++就能最终求出E(X)。

数学期望在生活中的应用

数学期望在生活中的应用 王小堂保亭中学 摘要:数学期望是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述了概率论与数理统计中的教学期望在生活中的应用,文章内容包括决策、利润、彩票、医疗等方面的一些实例,阐述了数学期望在经济和实际问题中颇有价值的应用。 关键词:随机变量,数学期望,概率,统计 数学期望(mathematical expectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 随机变量的数学期望值: 在概率论和统计学中,一个离散性随机变量的期望值(或数学期望、或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。换句话说,期望值是随机试验在同样的机会下重复多次的结果计算出的等同“期望”的平均值。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。(换句话说,期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。) 单独数据的数学期望值算法: 对于数学期望的定义是这样的。数学期望 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi).则:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) 很容易证明E(X)对于这几个数据来说就是他们的算术平均值。 1 决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

条件数学期望及其应用

条件数学期望及其应用 The ways of finding the inverse matrix and it ’s application Abstract :The passage lists the ways of calculating the first type of curvilinear integral,and discusses it ’s application in geometry and in physical. Keywords :Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1 设X 是一个离散型随机变量,取值为},,{21 x x ,分布列为 },,{21 p p .又事件A 有0)( A P ,这时 ,2,1,) () }({)|(| i A P A x X P A x X P P i i A i 为在事件A 发生条件下X 的条件分布列.如果有 A i i i p x | 则称 A i i i p x A X E |]|[ . 为随机变量X 在条件A 下的条件数学期望(简称条件期望). 定义2 设X 是一个连续型随机变量,事件A 有0)( A P ,且X 在条件A 之

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

数学期望在生活中的应用原文

一、数学期望的定义及性质 (一)数学期望分为离散型和连续型 1、离散型 离散型随机变量的一切可能的取值Xi与对应的概率Pi(=Xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(X)。数学期望是最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。如果随机变量只取得有限个值,称之为离散型随机变量的数学期望。它是简单算术平均的一种推广,类似加权平均。E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn)。X1,X2,X3,……,Xn 为这几个数据,P(X1),P(X2),P(X3),……,P(Xn)为这几个数据的概率函数。在随机出现的几个数据中,P(X1),P(X2),P(X3),……,P(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi),则:E(X) = X1*P(X1)+ X2*P(X2)+ …… + Xn*P(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn)。 2、连续型 连续型则是:设连续性随机变量X的概率密度函数为f(X),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。若随机变量X的分布函数F(X)可表示成一个非负可积函数f(X)的积分,则称X为连续随机变量,f(X)称为X的概率密度函数(分布密度函数)。能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为连续型随机变量。 (二)数学期望的常用性质 1.设X是随机变量,C是常数,则E(CX)=CE(X); 2.设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y); 3.设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。 对于第一条性质,假设E(X)你的考试成绩,C为你们全班人数,则你们全班总分的期望等于全班人数乘以个人的期望,这很好理解。 对于第二条性质,E(X)为你的考试成绩,E(Y)是小明的考试成绩,你和他成绩总和的期望当然等于你和他的期望值和。 对于第三条性质,我们一再强调是独立的,也就是相互没有关联,有关联是肯定是不是不等的。

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

条件数学期望及其应用

实用文档 文案大全条件数学期望及其应用 The ways of finding the inverse matrix and it's application Abstract:The passage lists the ways of calculating the first type of curvilinear integral,and discusses it's application in geometry and in physical. Keywords:Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各 点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积 分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都 是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1设X是一个离散型随机变量,取值为},,{21?xx,分布列 为},,{21?pp.又事件A有0)(?AP,这时 ,2,1,)()}({)|(|??????iAPAxXPAxXPP iiAi

为在事件A发生条件下X的条件分布列.如果有 ???Aiii px| 则称 ??. Aiii pxAXE|]|[ 为随机变量X在条件A下的条件数学期望(简称条件期望). 定义2设X是一个连续型随机变量,事件A有0)(?AP,且X在条件A 之 实用文档 ??????dxAXxf)|(称为随机变量文案大全下的条件分布密度函数为)|(Axf.若 X在条件A下的条件数学期望. 定义3设),(YX是离散型二维随机变量,其取值全体为 },2,1,),,{(??jiyx ii, 联合分布列为 ?,2,1,),,(????jiyYxXPp iiij, 在i yY?的条件下X的条件分布列为?,2,1),|(|????iyYxXPp iiji若 ???jiii px|, 则 ??? jiiii pxyYXE|]|[ 为随机变量X在i yY?条件下的条件数学期望. 定义4 设),(YX是连续型二维随机变量,随机变量X在yY?的条件下的条件密度函数为)|(|yxp YX,若 ??????dxyxpx YX)|(|, 则称

数学期望的计算方法及其应用

数学期望的计算方法及其应用

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量连续型随机变量数学期望计算方法 ABSTRACT:

第一节离散型随机变量数学期望的计算方法及应用1.1利用数学期望的定义,即定义法[1] 定义:设离散型随机变量X分布列为 则随机变量X的数学期望E(X)=)( 1i n i i x p x ∑=

注意:这里要求级数)( 1i n i i x p x ∑ = 绝对收敛,若级数 []2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 解设X表示该推销人用船运送货物时每箱可得钱数,则按题意,X的分布为 按数学期望定义,该推销人每箱期望可得= ) (X E10×0.6+8×0.2+5×0.1-6×0.1=7.5元1.2公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

数学期望在经济生活中的应用

数学期望在经济生活中的应用 【摘要】数学期望是随机变量的重要数字特征之一。本文通过探讨数学期望在决策、利润、委托代理关系、彩票等方面的一些实例,阐述了数学期望在经济和实际问题中的应用。 【关键词】随机变量数学期望经济应用 数学期望(mathematical expectation)简称期望.又称均值,是概率论中一项重要的数字特征.在经济管理工作中有着重要的应用。本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。 一.决策方案问题 决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案A(i=1,2,?,m)在每个影响因素S(j=1.2,?,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。 1.风险方案 假设某公司预计市场的需求将会增长。目前公司的员工都满负荷地工作着.为满足市场需求,公司考虑是否让员工超时工作或以添置设备的办法提高产量。假设公司预测市场需求量增加的概率为P,同时还有1-p的可能市 是合算的。然而现实是不知道哪种情况会出现,因此要比较几种方案获利的 期望大小。用期望值判断,有:E(A 1)=30(1-p)+34p,E(A 2 )=29(1-p)+42p, E(A 3)=25(1-p)+44p。事实上.若p=0.8,则E(A 1 )-33.2(万), E(A 2)=39.4(万),E(A 3 )=40.2(万),于是公司可以决定更新设备,扩大生产。 若p=O.5,则E(A 1)=32(万),E(A 2 )=35.5(万),E(A 3 )=34.5(万),此时公司 可决定采取员工超时工作的应急措施。由此可见,只要市场需求增长可能性在50%以上.公司就应采取一定的措施,以期利润的增长。 2.投资方案 假设某人用10万元进行为期一年的投资.有两种投资方案:一是购买股票:二是存入银行获取利息。买股票的收益取决于经济绝势,若经济形势

数学期望性质与应用举例

5.数学期望的基本性质 利用数学期望的定义可以证明,数学期望具有如下基本性质: 设ξ, η为随机变量,且E(ξ),E(η)都存在,a,b,c为常数,则 性质1.E(c)=c; 性质2.E(aξ)=aE(ξ); 性质3.E(a+ξ)=E(ξ)+a; 性质4.E(aξ+b)=aE(ξ)+b; 性质5. E(ξ+η)=E(ξ)+E(η). 例3.5.7设随机变量X的概率分布为: P(X =k)=0.2 k =1,2,3,4,5. 求E(X),E(3X+2). 解. ∵P(X=k)=0.2 k=1,2,3,4,5 ∴由离散型随机变量的数学期望的定义可知 E(X)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3, E(3X+2)=3E(X)+2=11. 例3.5.8. 设随机变量X的密度函数为: 求E(X),E(2X-1). 解.由连续型随机变量的数学期望的定义可知 =-1/6+1/6=0. ∴E(2X-1)=2E(X)-1=-1. 我们已经学习了离散型随机变量和连续型随机变量的数学期望,在随机变量的数字特征中,除数学期望外,另一重要的数字特征就是方差.

4.1.2 数学期望的性质 (1)设是常数,则有。 证把常数看作一个随机变量,它只能取得唯一的值,取得这个值的概率显然等于1。所以,。 (2)设是随机变量,是常数,则有 。 证若是连续型随机变量,且其密度函数为。 。 当是离散型随机变量的情形时,将上述证明中的积分号改为求和号即得。 (3)设都是随机变量,则有 。 此性质的证明可以直接利用定理4.1.2,我们留作课后练习。这一性质可以推广到有限个随机变量之和的情况,即 。 (4)设是相互独立的随机变量,则 。 证仅就与都是连续型随机变量的情形来证明。设的概率密度分别为 和,的联合概率密度为,则因为与相互独立,所以有 。 由此得

高中数学《数学归纳法及应用举例》说课稿

《数学归纳法及应用举例》第一课说课方案 一、说教材 (一)教材分析 本课是数学归纳法的第一节课。前面学生已经通过数列一章内容和其它相关内容的学习,初步掌握了 由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法。不完全归纳法它是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为 一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法─数学归纳法。 数学归纳法安排在数列之后极限之前,是促进学生从有限思维发展到无限思维的一个重要环节。并且,本 节内容是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。 (二)教学目标 学生通过数列等相关知识的学习。已基本掌握了不完全归纳法,已经有一定的观察、归纳、猜想能力。通过近几年教学方法的改革和素质教育的实施,学生已基本习惯于对已给问题的主动探究,但主动提出问 题和置疑的习惯还未形成。能主动提出问题和敢于置疑是学生具有独立人格和创新能力的重要标志。如何 让学生主动置疑和提出问题?本课也想在这方面作一些尝试。 根据教学内容特点和教学大纲、根据学生以上实际、根据学生终身发展需要而制订以下教学目标。 1.知识目标 (1)了解由有限多个特殊事例得出的一般结论不一定正确。 (2)初步理解数学归纳法原理。 (3)理解和记住用数学归纳法证明数学命题的两个步骤。 (4)初步会用数学归纳法证明一些简单的与正整数有关的恒等式。 2.能力目标 (1)通过对数学归纳法的学习、应用,培养学生观察、归纳、猜想、分析能力和严密的逻辑推理能力。 (2)让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生的创新能力。 3.情感目标 (1)通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神。 (2)让学生通过对数学归纳法原理的理解,感受数学内在美的振憾力,从而使学生喜欢数学。 (3)学生通过置疑与探究,培养学生独立的人格与敢于创新精神。 (三)教学重难点 根据教学大纲要求、本节课内容特点和学生现有知识水平,确定如下教学重难点: 1.重点 (1)初步理解数学归纳法的原理。 (2)明确用数学归纳法证明命题的两个步骤。 (3)初步会用数学归纳法证明简单的与正整数数学恒等式。 2.难点 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性。 (2)假设的利用,即如何利用假设证明当n=k+1时结论正确。 二、说教法 本课采用交往式的教学方法。交往教学法的特点是:在教师的组织启发下,师生之间、学生之间共同 探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动 性、平等性、开放性、合作性。这种教学方法的优点是学生心态开放,主体性和主动性凸现,独立的个性 得到张扬,因而创造性得到解放。 三、说学法 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习。本课学生的 学习主要采用下面的模式进行: 观察情景提出问题分析问题猜想与置疑(结论或解决问题的途径) 论证应用。 探究学习法的好处是学生主动参与知识的发生、发展过程。学生在探究问题过程中学习,在探究问题 的过程中激发学生的好奇心和创新精神;在探究过程中学习科学研究的方法;在探究过程中形成坚韧不拔

数学期望和方差的应用

2QQ2±:箜!塑工 -学术-理论现代衾案一 数学期望和方差的应用 陈奕宏张鑫 (武警广州指挥学院广东广州510440) 摘要:本文主要讨论随机变量的数学期望和方差的性质,利用随机变量的对称性可简化求数学期望和方差的计算过程: 关键词:对称性数学期望方差 在教学过程中,由于很多同学对概牢论巾的定义和性质认识不深刻,冈此对概率论巾的问题存在许多认识误区,进一步影响了计算、证明能力。 性质l对随机变量x和y,则有E(nn簟Ⅸ+Ey①性质2设随机变量x和y相互独立,贝咿育层陇n=Ex?Ey②定义l设X是一个随机变量,若EI肛删Iz存在,则称其为X的方差,记为Dx。即 Dx=坦Ix—Ex】2③显然可得:们,-ElX一以】2 =E瞄2—2xEX+(踊2] =麟z一(删):④性质3设随机变量x和y相互独立,则有层孵y:净E孵?Ey2⑤证明:设随机变量X和y的联合分布密度为m砂),|jl《为x和y相互独立,有 “r,y)=^(掌)。,r(y) .’.E(x2y2)=J一。J一。工2y2“r,j,)d膏咖 =eex2y2以(r)厂r(y)如咖 =Cx2^(工)如Cy2加)咖 :Ex2E】,2⑥性质4设随机变量x和l,,n和西为常数,则有E(口X2+6y2)=n露x2+6曰y2(D证明:设随机变量x和l,的联合分布密度为厂(x,j,),则有 E似x2+6y2)=J+。J一。(口工2+6j,2)“r,j,)d_咖 =e仁nx2flx,,Mxdy+e仁b矿fIx,yⅪxdy ,+∞,+∞r十o,+∞ =n\一。\一亭2fIx,如dxd,+b1.。1一。旷fIx,,Ⅺxdy =口f)2【e№j,)dy】dr拍ej,2【C“础)dx协 =口仁量2【e,(Ⅵ)dyJdx柏ej,2【C,(础)dx坳 =n尽2以(r)dy拍D2加)dy =口EX2+西Ey2 掣狮,=∥茗引m,=驴㈣’翟引 求E伍2+y2)。 解:E(x2+y2)=Ex2+Eyz(南公式⑦) =I:一4r3出+炒.12y2(1+y)咖《 性质5设随机变量x和y卡H互独立,则有 D(x的=Dx?Dy+(E幻2?Dl,+(层y)2?Dx⑧ 证明:ODⅨy)=层(xy)2一IE(xy)J2 =E(X2y2)一(EX)2(E】,)2 南公式⑤,所以 D(Xn=EX2Ey2一(EX)2(E”2 =曰x2El,2一(E的2EP+(E的2(El,)2一(E抑2僻y)2 =【层x2一(EX)2】EP+(Ex)2【(E】,)2一(日y)2】 矗剪陋妒+(雕净汗钮曙(联)辚苦帮 =n碰Iy+(EY)2Dy+(Ey)2蹦 显然,若随机变量x和y独立,则可得D(xn>Dx?Dy⑨例设随机变量x和l,相互独立,均服从Ⅳ(O,1)分布,f=x—y,叩=xy,试求1)D叩;2)p£。。 解:1)方法一 OX和y相互独立 .‘.D即=D(xy)=E(xl,)2一【层(x聊】2 =E(r—l,)2一(以E的2 =E舻EP(由公式⑤) =【脚“(E的2】【Dy;(E玢2】=1 方法二 0X和y相互独立 .?.Dq=D(x】,)=似Dy+(E柳2Dy+(目】,)2Dx=l(由公式⑧)2)op。:』业 q厩丽 又OcoV(f,'7)=层【(f—Ef)('7一露77)j =层(x2y)一E(xP)(把f=x—y,’7=xy代人) 曲(南x与r鹃对称性)综上所述,本文主要讨论连续型随机变量的数字特征的性质,结合对随机变量的对称性可解决存概率论巾一些常见的求数[字特征的问题。 参考文献: …盛骤等编概率论与数理统计高等教育出版社2001.12口 现代企业教育MODERNENTERPRISEEDUCATION117 万方数据

数学期望在生活中的运用

数学期望的性质及其在实际生活中的应用 ●数学期望的概念: 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一,它反映随机变量平均取值的大小。 ●数学期望的定义 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) X1,X2,X3,……,Xn为这几个数据,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),p(X3),……p(Xn)概率函数就理解为数据X1,X2,X3,……,Xn出现的频率f(Xi). 则: E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn) E(X)对于这几个数据来说就是他们的算术平均值。 ●数学期望的应用: 例一、某一彩票中心发行彩票10万张,每张2元。设头等奖1个,奖金1万元,二等奖2个,奖金各5千元;三等奖10个,奖金各1千元;四等奖100个,奖金各100元; 五等奖1000个,奖金各10元。每张彩票的成本费为0.3元,请计算彩票发行单位的创收利润。 E(X)=10000×+5000×+ 0 =0.5(元) 每张彩票平均可赚 2-0.5-0.3=1.2(元), 因此彩票发行单位发行10万张彩票的创收利润为 100000×1.2=120000(元) 小结:通过计算期望,我们可以得到单张彩票的平均利润,从而得出总共的创收利润。 例二、某投资者有10万元资金,现有两种投资方案供选择:一是购买股票;二是存人银行。买股票的收益主要取决于经济形势,假设经济形势分为三种状态:形势好、形势中等、形势不好。在股市投资10万元,以一年计算,若形势好可获利40 000元;若形势中等可获利10 000元;若形势不好则会损失20 000元。如果存人银行,假设年利率为8%,即一年可得利息8 000元。又设年经济形势好、中等、不好的概率分别为30%、50%和20%。试问该投资者想获得最高收益期望应选择哪种投资方案? 分析: 购买股票的收益与经济形势有关,存入银行的收益与经济形势无关。购买股票在经济形势好和中等的情况下是合算的,但是如果经济形势不好,则采取存人银行的方案比较好。因此,要辨别哪一种方案更优,就必须计算购买股票的收益期望,然后与存入银行的收益进行比较来判断。 如果购买股票,其收益的期望值E=40000×0.3+10000×0.5+(-20000)×0.2=13000(元);如

数学期望及其应用

数学期望及其应用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

本科生毕业论文 题目: 数学期望的计算方法与实际应用 专业代码: 070101 原创性声明 本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明. 本人承担本声明的相应责任. 学位论文作者签名: 日期 指导教师签名: 日期 目录

摘要 数学期望简称期望,又称均值,是概率论中一项重要的数字特征,它代表了随机变量总体取值的平均水平。数学期望的涉及面非常之大,广泛应用于实际生活中的各个领域。在实际生活中,有许多问题都可以直接或间接的利用数学期望来解决。其意义是运用对实践中抽象出来的数学模型进行分析的方法,从而达到认识客观世界规律的目的,为进一步的决策分析等提供准确的理论依据。 本文从数学期望的内涵出发,介绍了数学期望的定义、性质,介绍了数学期望的几种计算方法并举以实例,通过数学期望在医学疾病普查、体育比赛和经济问题中的应用的探讨。特别是在经济问题方面,本文又详细分为免费抽奖问题、保险公司获利问题、决定生产批量问题、机器故障问题、最佳进货量问题和求职决策问题,试图初步说明数学期望在实际生活中的重要作用,几个例子将数学期望与实际问题结合,用具体实例说明利用数学期望方法解决实际问题的可行性,体现了数学期望在生活中的应用。 关键词:概率论与数理统计;数学期望;性质;计算方法;应用 Abstract Mathematical expectation or expectations, also known as average, is very important digital features in the theory of probability, and it represents the overall average value random variables. Mathematical expectation is very big, widely applied in all fields in actual life. In real life, there are a lot of problems can be directly or indirectly solved by using the mathematical expectation. Its meaning is to use mathematical model to carry on the analysis of practice of abstracting

数学期望在实际生活中的应用

摘要 在现代快速发展的社会中,数学期望作为一门重要的数学学科,它是随机变量的重要数字特征之一,也是随机变量最基本的特征之一。通过几个例子,阐述数学期望在实际生活中的应用包括经济决策、彩票抽奖、求职决策、医疗、体育比赛等方面的一些实例,体现出数学期望在实际生活中颇有价值的应用。通过探讨数学期望在实际生活中的应用,以起到让大家了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。所谓的求数学期望其实就是去求随机变量的以概率为权数的加权平均值,而平均值这一概念又是我们在实际应用中最常用的一个指标,在预测中使用是很具有科学性的。 关键词:数学期望随机变量性质实际应用

Abstract In the rapid development of modern society, the mathematical expectation as an important mathematical subject, it is one of the important digital features of random variables, is also one of the basic characteristics of random variables. Through several examples, in this paper, the mathematical expectation in the practical application of life including economic decision-making, lottery tickets, job, health, sports, etc. In some instances, manifests the mathematical expectation valuable application in real life. Through discuss the application of mathematical expectation in real life to play let everybody understand the knowledge and practice closely linked human rich background, personal experience "mathematics really useful". So-called mathematical expectation is to actually ask for random variables of the probability weighted average of the weight, and mean value in actual application of this concept is our one of the most commonly used indicators, used in the forecast, it is very scientific. Key words: Mathematical Expectation; Stochastic Variable; quality; Practical Application

相关文档
相关文档 最新文档