文档库 最新最全的文档下载
当前位置:文档库 › 2011矩阵论复习题

2011矩阵论复习题

2011矩阵论复习题
2011矩阵论复习题

2011矩阵论复习题

1. 设+

=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕

对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =?

问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由.

2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为

),(112211y x y x y x y x +++=⊕

对于任意的数R k ∈,定义k 与x 的数乘为

)2)1(,(2121x k k kx kx x k -+

=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由.

3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3

R 的子空间,并求S 的一组基和S dim .

4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='=

证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim .

5. 设T 是2

R 上的线性变换,对于基向量i 和j 有 j i i T +=)( j i j T -=2)(

1)确定T 在基},{j i 下的矩阵;

2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵.

6. 设T 是3

R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=

1)确定T 在基},,{k j i 下的矩阵;

2)求T 的零空间和像空间的维数.

7.在线性空间)(3R P 中

321)(x x x a x f +++= 3221)(x x ax x f +++= 32321)(x x x x f +++= 讨论)(),(),(321x f x f x f 的线性相关性.

8.在22R ?中求由基(I) 12101A ??= ??? 20122A ??= ??? 32112A -??= ??? 41312A ??= ??? 到基(II) 11210B ??=

?-?? 21111B -??= ??? 31211B -??= ??? 41101B --??= ???的过渡矩阵. 9.已知 1(1,2,1,0)α= 2(2,1,0,1)α=- 1(1,1,1,1)β=- 2(1,1,3,7)β=- 设1212(,)(,)V L L ααββ=?, 求线性空间V 的维数和基.

10.在)(2R P 中, 对任意的)()(),(2R P x g x f ∈定义内积为

?=1

0)()())(),((dx x g x f x g x f 若取)(2R P 的一组基},,1{2x x ,试用Schmidt Gram -正交化方法,求)(2R P 的一组正交基.

11. 在2[]P x 中,内积定义为:120,()(),,[].f g f x g x dx f g P x <>=

?∈? (1)如果()612+-=x x x f ,计算f ;

(2)证明:任一线性多项式()bx a x g +=,都正交于()612+

-=x x x f . 12.设A 是n n C

?上的n 阶方阵,x 是n C 上的n 维列向量,证明:22||||||||||||F Ax A x ≤?. 13.设n

n C A ?∈,并且满足E A A H =,计算2||||A 和F A ||||. 14.已知122112012422A ?? ?= ? ???

,求A 的最大秩分解。

15. 求矩阵10002i A i +??=

???的奇异值分解. 16.设m n A C ?∈,1)证明:()()H rank A A rank A =;

2) 证明:H

A A 是半正定矩阵或正定矩阵。

17.求下列矩阵的谱阵和谱分解 400031013A ?? ?= ? ??? 332112310A ?? ?=- ? ?--??

18.设s λλλ,,,21 是n 阶单纯矩阵A 的重数为s r r r ,,,21 的特征值,∑==s i i n r

1

i E 是A 的对应于i λ的谱阵,证明

1)0=j i E E ,(j i ≠ ),,2,1,s j i =

2) ∑==s i i E E

1

19.设函数矩阵???

? ??-=t t t t A cos sin sin cos , 求)(t A dt d , ))((det t A dt d 和))(det(t A dt d . 20.证明 1))()()())((111t A t A dt

d t A t A dt d ---??-= 2)A

e Ae e dt

d At At At == 21.已知????? ??=73487612i A , ????

? ??=845x , 求111||||,||||,||||,||||,||||,||||x x Ax Ax A A ∞∞∞

22.设a ||||?是n n C ?的一种矩阵范数,B 和D 是n 阶可逆矩阵,且,1||||1≤-a B 1||||1≤-a D ,试

证明对任意的n n C A ?∈,a b BAD A ||||||||=也是n n C ?的一种矩阵范数.

23. 已知a ||||?是n n C ?上的矩阵范数,0y 是n

C 中的某非零列向量,n x C ?∈设0||||||||H a x xy =证明它是n C 上的向量范数,并且与矩阵范数a ||||?相容。

24.设n n C A ?∈, B 和D 是酉矩阵, 证明: F F F F B A D

AD BA A ||||||||||||||||=== 25.已知???? ??-=00a a A , ???

? ??-=a a a a B cos sin sin cos 其中R a ∈且0≠a , 证明:B e A =. 26.已知???

? ??-=33i i A , 1)证明A 是Hermite 矩阵; 2)求方阵函数A cos .

27.已知??????

? ??=2000310020111001A , 1)求A 的Jordan 标准形J ; 2)求可逆矩阵P , 使J AP P =-1

28.已知??????

? ??=3000130001300001A , 求A sin 和)sin(At . 29.设A 为n 阶方阵,求证()det()A tr A e e =特别地当A 为反对称矩阵时有det()1A e =

30.设????

? ??----=163053064A , 求方阵函数A e 和()cos At .

31.证明:线性方程组b Ax =(其中n m C A ?∈ m C b ∈)有解的充分必要条件是b b AA =+

32.已知??????

? ??--=112001110001A , 求A 的广义逆矩阵+A . 33. 已知???

? ??=011i i i A , 求A 的广义逆矩阵+A . 34.设BC A =是A 的最大秩分解, 证明: +++=B C A

35.求微分方程组

32113x x x dt

dx +-= 32125x x x dt

dx -+-= 32133x x x dt

dx +-= 的通解及满足初始条件123(0)1(0)1

(0)0x x x ===的特解.

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

矩阵论武汉理工大学研究生考试试题科学硕士

武汉理工大学研究生考试试题(2010) 课程 矩阵论 (共6题,答题时不必抄题,标明题目序号) 一,填空题(15分) 1、已知矩阵A 的初级因子为223 ,(1),,(1)λλ-λλ-,则其最小多项式为 2、设线性变换T 在基123,,εεε的矩阵为A ,由基123,,εεε到基123,,ααα的过渡矩阵为P ,向量β在基123,,εεε下的坐标为x ,则像()T β在基123,,ααα下的坐标 3、已知矩阵123411102101,,,00113311A A A A -????????==== ? ? ? ?--???????? ,则由这四个矩阵所生成的子空间的维数为 4、已知0100001000011 000A ?? ? ?= ? ???,则1068A A A -+= 5、已知向量(1,2,0,)T i α=--,21i =-,则其范数 1α= ;2α= ;∞α= ; 二,(20)设1112112121220a a V A a a a a ??????==-=?? ?????? ?为22?R 的子集合, 1、证明:V 是22?R 的线性子空间; 2、求V 的维数与一组基; 3、对于任意的1112111221222122,a a b b A B a a b b ????== ? ????? V ∈,定义 2222212112121111234),(b a b a b a b a B A +++= 证明:),(B A 是V 的一个内积; 4、求V 在上面所定义的内积下的一组标准正交基。 三、(15分)设{} 23210[](),0,1,2i F t f t a t a t a a R i ==++∈=为所有次数小于3的实系数 多项式所成的线性空间,对于任意的22103()[]f t a t a t a F t =++∈,定义:

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

2014年矩阵论试题A

长 春 理 工 大 学 研 究 生 期 末 考 试 试 题 科目名称: 矩 阵 论 命题人:姜志侠 适用专业: 理 工 科 审核人: 开课学期:2013 ——2014 学年第 一 学期 □开卷 √闭卷 一、(10分)F 为数域,对于线性空间22?F 中任意矩阵??? ? ??=d c b a A ,规则σ,τ分别为??? ? ??=???? ??=c a A c b a A )(,0)(τσ,问σ,τ是否为22?F 上的变换,如果是,证明该变换为线性变换,并求该变换在基???? ??=000111E ,???? ??=001012E ,???? ??=010021E ,??? ? ??=100022E 下的矩阵. 二、(10分) 已知正规矩阵??? ? ??-=1111A ,求酉矩阵U ,使得AU U H 为对角形矩阵。三、(10分) 用Schmidt 正交化方法求矩阵???? ? ??=101011110A 的QR 分解. 四、(10分) 设矩阵?????? ? ? ?-=2000120010201012A ,求A 的行列式因子,不变因子,初等因子组, Jordan 标准形。 五、(10分) 求可对角化矩阵460350361A ?? ?=-- ? ?--?? 的谱分解式. 六、(10分) 在线性空间n m C ?中,对任意矩阵n m ij a A ?=)(,定义函数ij j i a mn A ,max ?=,证明此函数是矩阵范数。

七、(10分) 已知函数矩阵 ???? ??????=32010cos sin )(x x e x x x x A x , 其中0≠x ,试求)(lim 0x A x →,dx x dA )(,2 2)(dx x A d ,dx x dA )(. 八、(10分)已知矩阵?? ????--=1244916A ,写出矩阵函数)(A f 的Lagrange-Sylvester 内插多项式表示,并计算A πcos . .

研究生矩阵论试题与答案

中国矿业大学 级硕士研究生课程考试试卷 考试科目矩阵论 考试时间年月 研究生姓名 所在院系 学号 任课教师

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 33644421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A (1)能与对角矩阵相似;(2)特征值全为实数。

矩阵论2015年试题

2015年矩阵论 一、判断题(2 X 6=12分) (1) 线性空间R 3中的正交投影是正交变换。 (2) 如果g (λ)=(λ?2)(λ?5)2是矩阵A 的化零多项式,即g(A)=0,则2和5是矩阵A 的特征值。 (3) 设A 为n 阶方阵,矩阵函数f(A)有意义,如果A 相似于对角矩阵,则f(A)也相似于 对角矩阵。 (4) 如果矩阵运算A ?B =0,则矩阵A=0或者B=0。 (5) 如果矩阵A 既有左逆又有右逆,则矩阵A 一定是方阵,且为可逆矩阵。 (6) 对于矩阵A 和矩阵A +的秩,有rank(A) = rank(A +) 二、填空题(每个空3分,共27分) (1) 设矩阵A =[11+2i 3 23?i ?21?22?3i ],其中 i =√?1,则‖A ‖∞=___________________ (2) 线性空间W =*A ∈R 4x4| A T =A +的维,dimW=____________________________ (3) 设A =[130?2 ],矩阵B 的特征值为2,3,4,则矩阵A ?B 的特征值为 (4) 设线性空间R 3中的线性变换T 被定义为绕向量e 2=,010-T ,逆时针旋转一个θ 角的旋转变换,则变换T 的一个二维不变子空间是 (5) 设矩阵A 的UV 分解为A =[50 033064?1][1270250 02],则矩阵A 的LDV 分解为 (6) 设函数矩阵A(t)=[10t 3t ],则d(A ?1(t))dt = _____________________________ 三、 (12分)设P 为R 3中的正交投影,P 将空间R 3中的向量投影到平面π上, π=*(x y z )T |x +y ?z =0+,求P 在线性空间R 3的自然基*e 1 e 2 e 3+下的变换矩阵A 。 四、 (15分)设矩阵A =[3 1?112?1210 ], (1) 求可逆矩阵P 和矩阵A 的Jordan 矩阵J A ,使得P -1AP = J A (2) 设参数t ≠0,求矩阵函数e At 和矩阵e At 的Jordan 矩阵J e At 五、 (15分)设矩阵A =[1 1111 ?1],(1)求矩阵A 的奇异值分解 (2)求A + 六、 (15分)设矩阵A =[?120t ],B =[1?2?10],D =[132?3 ],矩阵方程为AX+XB=D , (1) 讨论t 为何值,矩阵方程有唯一解 (2) 在矩阵方程有唯一解时,求解其中的未知矩阵X 七、证明题(6分+7分=13分) (1) 如果矩阵A 是正规矩阵,且矩阵函数f(A)有意义,证明f(A)也是正规矩阵。(6分) (2)(7分)假设A ∈C n×n 是可逆的,证明: ‖A ‖2‖A ?1‖2=σmax σmin 其中σmax ,σmin 分别为A 的最大和最小的奇异值

矩阵论考试试题(含答案)

矩阵论试题 、(10 分)设函数矩阵 sin t cost At cost sin t 求: A t dt 和( 0 t 0 A t dt )'。 解: A t dt = 0 tt sin t dt 00 t costdt cost dt t sin tdt = 1 cost sint sint 1 cost t2 ( A t dt )' 2 = A t 2 2t sint2 2t cost 2 cost cost2 sint2 、(15分)在R3中线性变换将基 1 0 1 1 1 , 2 2 ,30 1 1 1 1 0 0 变为基 1 1 , 2 1 ,33 0 1 2 (1 )求在基 1, 2, 3 下的矩阵表示A; (2 ) 求向量1,2,3 T及在基1, 2, 3下的坐标; (3 ) 求向量1,2,3 T及在基1, 2, 3下的坐标。解:(1)不难求得: 1 1 1 2

因此 在 1, 2, 3 下矩阵表示为 1 1 1 A 1 1 2 011 k 1 (2) 设 1 , 2 , 3 k 2 ,即 k 3 0 1 k 1 解之得: k 1 10, k 2 4, k 3 9 解:容易算得 在 1, 2 , 3下坐标可得 y 1 1 1 1 10 23 y 2 1 1 2 4 32 y 3 0 1 1 9 13 (3) 在基 1, 2 , 3下坐标为 10 10 1 10 1 A 1 4 11 14 15 9 11 09 6 在基 1, 2 , 3 下坐标为 23 10 1 23 10 A 1 32 11 1 32 4 13 11 0 13 9 0 02 三、(20 分)设 A 0 1 0 ,求 e At 。 1 03 2 , 3下坐标为 10, 4, 9 T 。 所以 在 1,

(完整版)《2015矩阵论》试卷

2015年专业硕士生《矩阵论》试卷 学号 专业 姓名 一、填空题(除了第5小题外每小题4分,共27分) 1、设V 是由n 阶实对称矩阵按通常的矩阵加法与数乘构成的线性空间,则dimV= ,并且V 有基 。 2、设线性空间n V 上的线性变换σ在基n e e e ,,,21Λ下的矩阵为A ,在另一组 基n e e e ''',,,21 Λ下的矩阵为B ,由基n e e e ,,,21Λ到基n e e e ''',,,21Λ的过渡矩阵是C ,则B= (用A,C 表示)。 3、=??? ? ??∑ ∞ =k k 6.05.04.03.00 。 4、已知)(λA 的行列式因子1)(1-=λλD ,222)2()1()(--=λλλD , 5433)1()2()1()(+--=λλλλD ,则)(λA 的初等因子为 。 5、已知???? ??=3113A ,??? ? ??=21x ,则=2m A ,∞m A = , =1A , 2cond()A = ,=1Ax , =∞Ax 。 6、已知??? ? ??=2143A ,则)(A ρ= 。 二、判断题(10分) 1、同一个线性变换在不同基下的矩阵是相合关系。 ( ) 2、A 是收敛矩阵的充要条件是其谱范数小于1。 ( ) 3、 n 阶矩阵A 与B 相似的充要条件是它们的不变因子相同。 ( )

4、 A 的算子范数是其所有范数中最小的。 ( ) 5、正交变换的必要条件是保持两个向量的夹角不变。 ( ) 三、(8分)设A 是[]2x P 中的线性变换,已知2121x e +-=,x e -=32,23x x e +=, 2135)(x e A +-=且,2295)(x x e A +--=,236)(x x e A +=(1)证明[]1232,,e e e x 是P 的 一组基 ;(2)求向量下的坐标在基3212,,321e e e x x +-。 四、(9分)在[]2x P 中,设2321)(x k x k k x f ++=,线性变换A 为23(())A f x k k =++ 21312()()k k x k k x +++。(1)试写出A 在基2,,1x x 下的矩阵;(2)求[]2x P 中的 一组基,使A 在该组基下的矩阵为对角矩阵。

矩阵论考试试题(含答案)

矩阵论试题 一、(10分)设函数矩阵 ()??? ? ??-=t t t t t A sin cos cos sin 求:()?t dt t A 0和(()?2 0t dt t A )'。 解:()?t dt t A 0=()???? ? ??-????t t t t tdt tdt dt t dt t 0 sin cos cos sin =??? ? ??---t t t t cos 1sin sin cos 1 (()?2 t dt t A )'=()??? ? ? ?-=?22 22 2sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基 ????? ??-=1111α,????? ??-=1202α,??? ?? ??-=1013α 变为基 ????? ??-=0111β,????? ??-=1102β,??? ? ? ??-=2303β (1)求σ在基321,,ααα下的矩阵表示A ; (2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。 解:(1)不难求得: ()2111ααβασ-== ()32122αααβασ++-== ()321332αααβασ++-==

因此σ在321,,ααα下矩阵表示为 ??? ? ? ??---=110211111A (2)设()??? ?? ??=321321,,k k k αααξ,即 ??? ? ? ??????? ??---=????? ??321111021101 321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。 ()ξσ在321,,ααα下坐标可得 ???? ? ??--=????? ??--????? ??---=????? ??1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为 ??? ? ? ??-=????? ??--????? ??--=????? ??---61519410011111101 94101A ()ξσ在基321,,βββ下坐标为 ????? ??--=????? ??--????? ??--=????? ??---94101332230111111011332231A 三、(20分)设??? ? ? ??-=301010200A ,求At e 。 解:容易算得 ()()()()212--=-=λλλλ?A I

博士试题2011-矩阵论_最终版_

矩阵论考试试题 一 ( 20 分)已知23012012[]{()|,,}F t f t a a t a t a a a R ==++∈为所有次数小于3的实系数多项式所成的线性空间,对于任意的3[]F t 中的元素2012()f t a a t a t =++,定义3[]F t 上的线性变换T : 2122001[()]()()()T f t a a a a t a a t =+++++ 1.求T 在基21,,t t 下的矩阵A ; 2.求象子空间3([])T F t 和核1(0)T ?的维数; 3.是否可以求出3[]F t 的一组基,使得线性变换T 在这组基下的矩阵为对角阵?如果不可以,请说明原因。 二(20分) 已知1010011,11011A b ???? ????==???? ???????? , 1.求矩阵A 的满秩分解; 2.求 ; 3.用广义逆矩阵方法判断方程组Ax b =是否有解; 4.求方程组Ax b =的最小二乘解,并求其极小最小二乘解。 三 (15分)已知矩阵308316205A ????=????????? 。 1.求A 的行列式因子,不变因子,初级因子; 2.求A 的Jordan 标准形; 3.求A 的最小多项式。

四 (15分)已知126103114A ?????? =????????? 。 1.求sin At ; 2.计算sin d At dt 。 五 (10分)求矩阵121001121A ????=?????? 的QR 分解。 六(10分)设T 是n 维线性空间V 上的线性变换,证明: 1()(0)T V T ?? 的充要条件是20T =。 七 (10分) 设?是n n C ×上的F-范数。证明:若1A <, E 为n 阶单位 阵,则矩阵E A ?可逆,且 1 11()1E A E A A ?≤?≤??。

矩阵论--武汉理工大学研究生考试试题2010(科学硕士)

武汉理工大学研究生考试试题(2010) 课程矩阵论 (共6题,答题时不必抄题,标明题目序号) ,填空题(15 分) 1 1 1 0 已知矩阵A 0 °,A 2 1 1 ,A 3 所生成的子空间的维数为 证明:(代B )是V 的一个内积; 多项式所成的线性空间,对于任意的 f (t ) a 2t 2 a 1t a 。 F[t]3,定义:1、 已知矩阵A 的初级因子为 ,( 1)2, 2 ,( 1)3,则其最小多项式为 2、 设线性变换T 在基 1, 2, 3的矩阵为A ,由基 3到基 3的过渡矩阵为P , 向量在基 3下的坐标为x ,则像T ()在基 3下的坐标 1 ,则由这四个矩阵 1 4、 0 已知A 0 ,则 A 10 A 6 8A 已知向量 1,2,0, T i), i 2 则其范数 二,(20)设 V A a 11 a 21 a 22 an a 21 0为R 2 2的子集合, 1、 证明:V 是R 2 2的线性子空间; 2、 求V 的维数与一组基; 3、 a*i1 a^ 对于任意的A , a 21 a 22 V ,定义 (A, B) 4a 11b 11 3a 〔2b [2 2玄21匕21 a 22b 22 4、 求V 在上面所定义的内积下的一组标准正交基。 三、(15 分)设 F[t]3 2 f(t) a 2t a 〔t 玄 a j R, i 0,1,2为所有次数小于3的实系数

1、 证明:T 是F[tb 上的线性变换; 2、 求T 在基1,t,t 2下的矩阵A 。 四,(15分)设矩阵 1 2 3 A 0 1 2 0 0 1 1、 求A 的Jordan 标准形; 2、 求A 的最小多项式。 五(20分)已知 1 0 1 0 A 0 11, b 1 1 0 1 1 1、 求A 的满秩分解; 2、 求 A ; 3、 求AX b 的最小二乘解; 4、 求AX b 的极小范数最小二乘解。 六、(15分)已知 X 。 0 1、求矩阵函数e At ; 2 T[f(t)] (a 。a i )t (a 。 a 2)t ⑻ a 2) 2、求微分方程组 dx(t) dt Ax(t)满足初始条件x(0) X 0的解。

2015年矩阵论试题

第 1 页 共 5 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2015级硕士研究生 考试日期:2016.1.18 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ?? ??-=5221001i i A ,1-=i ,则___||||1=A ,___||||2=A ,___||||=F A 。 2. 若矩阵?? ? ? ? ? ? ? ?=03211032 21033210A ,则矩阵A 的谱半径____)(=A ρ 3.已知矩阵函数??? ? ??+-+---=--------t t t t t t t t At e e e e e e e e e 22222222,则______=A 4. 设矩阵??? ? ??=1101A ,则______=A 5.若矩阵n m C A ?∈,且列向量组是两两正交的单位向量,则____=+A 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数 题 号 一 二 三 四 总 分 得 分 得 分

第 2 页 共 5 页 (A 卷) (C) 若E AA H =,则 1=A (D )?-=H A A A 的特征值全为零或纯虚数 7.设A 是幂等矩阵(即A A =2),则下列命题不正确的是 ( ) (A )A 与对角矩阵相似 (B )A 的特征值只可能是1或0 (C )A A )1(sin sin = (D )幂级数10)(-∞ =-=∑A E A k k 8.设V 为酉空间,,,,,C V z y x ∈∈?λ则有 ( ) (A) ),(),(x y y x = (B) ),(),(y x y x λλ= (C) 0≠x 但0),(=x x (D) ),(),(),(z x y x z y x +=+ 9. 设T 是线性空间V 上的一个线性变换,则下列命题正确的是 ( ) (A )V T T R =+)ker()( (B )V T T R dim ))dim(ker())(dim(=+ (C )}0{)ker()(=T T R (D ))ker()()ker()(T T R T T R ⊕=+. 10. 与命题“n 阶矩阵B A ,相似”不等价的命题是 ( ) (A) B A ,具有相同的特征多项式 (B) B A ,具有相同的初级因子 (C) B A ,具有相同的不变因子 (D) B A ,的特征矩阵B E A E --λλ,等价 二、解答题(10分) 11. 设??? ? ??-=02212A ,判断∑+∞ =02m m m A 是否收敛,若收敛求其和. 三、证明题(每小题10分, 共20分) 12. 设21,e e 是线性空间2V 的基,21,T T 是2V 上的两个线性变换:221111)(,)(εε==e T e T ,且2121221212)(,)(εεεε-=-+=+e e T e e T . (1)证明:21T T =. 得 分 得 分

相关文档
相关文档 最新文档