文档库 最新最全的文档下载
当前位置:文档库 › 自然对数e

自然对数e

自然对数e
自然对数e

自然对数e

e,作为数学常数,是自然对数函数的底数。它就像圆周率π和虚数单位i,是数学中最重要的常数之一,也是第一个被获证为超越数的非故意构造的数。

第一次提到常数e,是约翰?纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉?奥特雷德制作。第一次把e看为常数的是雅各?伯努利. 已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e 来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。

相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:欧拉取自己名字的第一个字母e作为自然对数的底。其实欧拉选择e的理由,较为多数人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;另一说法为e是“指数”一词英文的第一个字母,虽然你或许会怀疑瑞士人欧拉的母语不是英文,可事实上法文、德文的“指数”都是它。 e就是欧拉通过极限而发现的,它是个无限不循环小数,其值等于2.71828……。以e为底的对数叫做自然对数,用符号“ln”表示。当x趋于正无穷大或负无穷大时,“1加x分之一的x次方”这个函数表达式(1+1/x)^x的极限就等于e,用公式表示,即:lim(1+1/x)

^x=e(x趋于±∞)

e也是“自然律”的一种量的表达。“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程,另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展的本质。“自然律”具有把有序和无序、生机与死寂寓于同一形式的特点,在美学上有重要价值。

也许e还有更深入的秘密等着我们去发掘!

自然对数

自然对数 以常数e为底数的对数叫做自然对数,记作lnN(N>0)。自然对数在物理学、生物学等自然科学中有重要的意义。 1数学表示方法 自然对数的一般表示方法为 数学中也常见以 表示自然对数。若为了避免与基为10的常用对数混淆,可用“全写” 2概念 它的含义是单位时间内,持续的翻倍增长所能达到的极限值 有关概念 自然对数的底数e是由一个重要极限给出的。我们定义:当n趋于无限时, e是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。对数函数 当自然对数中真数为连续自变量时,称为对数函数,记作 (x为自变量,y为因变量). e的级数展开式 易证明:函数展开为x的幂级数(Maclaurin级数)是 ; 特别地,当x=1时就得到了e的展开式

3意义 物理学意义 在热力学第二定律中,系统的宏观状态所对应的微观态的多少表现为宏观态的无序程度,同时也决定了宏观过程的方向性。看起来,一个宏观状态对应的微观状态的多少是个很重要的物理量,它标志着这个宏观态的无序程度,从中还可以推知系统将朝什么方向变化。物理学中用字母Ω表示一个宏观状态所对应的微观状态的数目。 为了研究方便,物理学家们用得更多的是一个与Ω相关的物理量,这就是今天常常听到的——熵(entropy),用字母S表示。玻尔兹曼在1877年提出了熵与微观态的数目Ω的关系,即S∝lnΩ,后来普朗克把它写成了等式S=klnΩ,式中k叫做玻尔兹曼常量。如前所述,既然微观态的数目Ω是分子运动无序性的一种量度,由于Ω越大,熵S也越大,那么熵S自然也是系统内分子运动无序性的量度。在引入熵之后,关于自然过程的方向性就可以表述为:在任何自然过程中,一个孤立系统的总熵不会减小。这就是用熵的概念表示的热力学第二定律。为此,不少人也把热力学第二定律叫做熵增加原理。 由熵的定义可以知道,熵较大的宏观状态就是无序程度较大的宏观状态,也就是出现概率较大的宏观状态。在自发过程中熵总是增加的,其原因并非因为有序是不可能的,而是因为通向无序的渠道要比通向有序的渠道多得多。把事情搞得乱糟糟的方式要比把事情做得整整齐齐的方式多得多。要让操场上的一群学生按班级、按身高,或按任何规则来站队都是比较麻烦的:每个学生都要找到自己的位置。但是要让已经站好队的学生解散,那就非常简单:每个学生随便朝一个方向跑去,队形就乱了。从微观的角度看,热力学第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着无序,所以自发的宏观过程总是向无序度更大的方向发展。 生物学意义 在连锁交换定律中,重组率或重组值是指双杂合体测交产生的重组型配子的比例,即重组率=重组配字数/总配子数(亲组合+重组和)×100%,重组是交换的结果,所以重组率(recombination fraction)通常也称作交换率(crossing over percentage)或交换值。可是仔细推敲起来,这两个数值是不尽相同。 如果我们假定,沿染色体纵长的各点上交换的发生大体上是随机的。那么可以这样认为,如果两个基因座相距很近,由交换而分开较少,重组率就低;如果两基因座离开很远,交换发生的次数较多,重组率就高。所以可以根据重组率的大小计算有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。生物学家就是这样做的。 如果有关的两个基因座在染色体上分开较远,举例说重组率在12%-15%以上,那么进行杂交试验时,其间可能发生双交换或四交换等更高数目的偶数交换,形成的配子却仍然是非重组型的。这时如简单地把重组率看作数交换率,那么交换率就要被低估了。因为遗传图是以1%交换率作为图距单位的,所以如交换率低 估了,图距自然也随之缩小了,这就需要校正。校正的公式较多,可根据自己得出的连锁与交换试验的结果,提出单是适用于某一生物的校正公式。一般来说,

用Mathematica研究自然对数的底数e

用Mathematica 研究自然对数的底数e 作 者:陈 龙 摘要:e 是一个奇妙有趣的无理数,它取自瑞士数学家欧拉的英文字头。e 与π被认为是数学中最重要的两个超越数,e 、 π及i (i 为虚数单位)三者间存在1-=i e π的关系。本文利用Mathematica 软件研究了自然对数的底数e ,介绍了e 的 一些相关知识、e 与自然对数的关系以及e 的值的计算方法等。 关键词:Mathematica ,e ,自然对数 一、引言 远在公元前,圆周率π就被定义为“周长与直径之比”。自古以来,π的近似值一直取为 3.14或 7 22() 742851.3 =。通过许多数学家的努力,π的近似值位数不断增加。目前用电脑计算圆周率。由于电脑速度等功能不断改进,今后π的近似值位数会越来越多。 另外一个奇妙有趣的无理数是e ,它取自瑞士数学家欧拉(Euler ,1707-1783)的英文字头。欧拉首先发现此数并称之为自然数e 。但是,这种所谓的自然数与常见正整数1,2,3,……截然不同。确切地讲,e 应称为“自然对数a e log 的底数”。 e 与π被认为是数学中最重要的两个超越数(transcendental number ,若一数为()0=x f 之根,其中f 为某一至少一次的整系数多项式,则此数称为代数数(algebraic number ),否则称为超越数)。e 、 π及i (i 为虚数单位)三者间存在1-=i e π的关系。本文主要介绍e 的一些知识以及用 Mathematica 软件来计算e 。 二、欧拉数e 考虑数列{}n a ,n a = ∑=n i i 0 !1=!1!21!111n ++++ ,1≥n ,其中!n =()1231????- n n ,1≥n ,1!0=,应用下述关于级数收敛的基本定理之一可证明出其极限存在。 定理1.设数列{}n a 为单调且有界,则当∞→n 时,a a n →(a 为一有限数)。 首先,对n a = ∑=n i i 0 !1 ,显然{}n a 为单调递增数列。其次,1a =2,2a =25,而3≥n 时, n a =1+1+ n ???++??+?+ 321 432132121 <1+1+1322 1 212121-++++n = 1+2 11211-??? ??-n <3, 即数列{}a 以3为一上界。故有定理1知,数列{}a 收敛至一实数,由于此极限值与圆周率π一样在许

e是自然对数的底数

ln和e是什么关系? 对数和底数是干嘛的? 三角函数的画图? ln就是loge lne=logee=1 lne=1 他俩没啥关系一个是运算符号一个是自然数e的ln次方等于1 e^(ln3)=3 In=loge ln(1)=loge(1)=0 e=2.71多 e是自然对数的底数,是一个无限不循环小数。e在科学技术中用得非常多,一般不使用以10为底数的对数。学习了高等数学后就会知道,许多结果和它有紧密的联系,以e为底数,许多式子都是最简的,用它是最“自然”的,所以叫“自然对数”,因而在涉及对数运算的计算中一般使用它,是一个数学符号,没有很具体的意义。其值是2.71828……,是这样定义的: 当n->∞时,(1+1/n)^n的极限。 注:x^y表示x的y次方。 你看,随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.718281828……这个无限不循环小数1+1/1!+1/2!+1 /3!+1/4!+……+1/n!,当n趋近无穷时,其极限值就为e. 对数(Logarithm 若)。则b叫做以a为底N的对数,记作。当a=10时称作常用对数,当a=e时,称作自然对数。 我们知道,一般对数的底可以为任意不等于1的正数。即对数的底如果为超越数e(e=2.718)我们就把这样的对数叫作自然对数,用符号“LN”表示。在这里“1”是对数“logarithm"的第一个字母,“N”是自然“nature"的第一个字母,把两个字母合在一起,就表示自然对数。 “lg”才表示以10为底的对数!!!! ln1=0 表示e的0次方=1 ln100=4.605170…… 表示e的4.605170次方=100

自然对数e的由来

自然对数e的由来 e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰?纳皮尔引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。 它的数值约是(小数点后100位):e ≈ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 第一次提到常数e,是约翰?纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉?奥特雷德(William Oughtred)制作。第一次把e看为常数的是雅各?伯努利(Jacob Bernoulli). 已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。 用e表示的确实原因不明,但可能因为e是“指数”(exponential)一字的首字母。另一看法则称a,b,c和d有其他经常用途,而e是第一个可用字母。不过,欧拉选这个字母的原因,不太可能是因为这是他自己名字Euler的首字母,因为他是个很谦虚的人,总是恰当地肯定他人的工作。 很多增长或衰减过程都可以用指数函数模拟。指数函数的重要方面在于它是唯一的函数与其导数相等(乘以常数)。e是无理数和超越数(见林德曼—魏尔施特拉斯定理(Lindemann-Weierstrass))。这是第一个获证为超越数,而非故意构造的(比较刘维尔数);由夏尔?埃尔米特(Charles Hermite)于1873年证明。 当x趋于正无穷大或负无穷大时,“1加x分之一的x次方”这个函数表达式(1+1/x)^x的极限就等于e,用公式表示,即: lim(1+1/x)^x=e (x趋于±∞) 实际上e就是欧拉通过这个极限而发现的,它是个无限不循环小数,其值等于2.71828……。以e为底的对数叫做自然对数,用符号“ln”表示。 以e为底的对数(自然对数)和指数,从数学角度揭示了自然界的许多客观规律,比如指数函数“e的x次方”对x的微分和积分都仍然是函数本身。后人把这个规律叫做“自然律”,其中e是自然律的精髓。因此,上述求极限e的公式被英国科学期刊《物理世界》2004年10月号公布为读者选出的科学界历来“最伟大的公式”之一,并且名列第二。 欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰?伯努利(Johann Bernoulli,1667-1748年)的精心指导。

自然对数的底e

自然对数的底e 徐厚骏 摘要:本文介绍了自然对数的底e 的定义、性质,介绍了e 近似计算的精确度的计算方法,以及在对数、指数和双曲函数中的应用,并介绍了在复数域中,双曲函数与三角函数的关系。 自然对数的底一般用e (也有用ε)表示,这是一个很特殊也非常有用的数,我们可以用极限概念来定义。 ㈠自然对数的底e 的由来 我们研究下列整序变量: n n n x 11(+=其中n 为正整数使用二项式定理可展开为 11()11(!1)11()11(!12111(!31)11(!2111121)1()1(121)1()1(1321)2)(1(121)1(1132n n n n n k n k n n n n n n n n n n k k n n n n n n n n n n n n x n k n ??…?+…+??…?++…+??+?++==??…??+?…?+…+??…??+?…?++…+?????+???+?+=如果使n 增大1,则等式左边变为x n+1,等式右边首先应该在最后加上第(n+2)项(正的),而前面n+1项中的每一项也都增大了一些,因为在任一括号内的n s ?1型的因式都已换成较大的因式1 1+?n s 。由此必然有x n+1>x n 。

如果我们在x n 中略去一切括号内的因式,也会使x n 增大一些,因此 n n y n x =+…+++

自然对数底e的由来

自然对数底e 的由来 圆周率π生活中很容易被找到或被发现,一个圆的周长与其直径的比等于圆周率π。可自然对数的底e 一直困扰着我们。高中数学中,有以10为底的对数,即常用对数。教材中曾指出,如果底数是以e 为底的对数,我们称之为自然对数,并且自然对数的底e=2.71828……是一个无理数。除此之外,我们知道甚少,e 似乎是来自纯数学的一个问题。事实上,对于自然对数的底e 是有其生活原型的。在历史上,自然对数的底e 与曾一个商人借钱的利息有关。 过去,有个商人向财主借钱,财主的条件是每借1元,一年后利息是1元,即连本带利还2元,年利率100%。利息好多喔!财主好高兴。财主想,半年的利率为50%,利息是1.5元,一年后还1.52=2. 25元。半年结一次帐,利息比原来要多。财主又想,如果一年结3次,4次,……,365次,……,岂不发财了? 财主算了算,结算3次,利率为3 1 ,1元钱一年到期的本利和是:元 37037.23113 =??? ? ?+, 结算4次,1元钱到一年时还元 44140.24114=??? ??+。 财主还想,一年结算1000次,其利息是: 这么大的数,年终肯定发财了。可是,财主算了算,一元钱结帐1000次,年终还的金额只有:

元 71692.21000111000=??? ??+。 这令财主大失所望。他以为,结帐次数越多,利息也就增长得越快。财主根本不知道,n n ??? ??+11的值是随n 的增大而增大,但增加的数额极其缓 慢;并且,不管结算多少次,连本带利的总和不可能突破一个上限。数学家欧拉把n n ??? ??+11极限记作e , e=2.71828…,即自然对数的底。

自然对数e

自然对数e e,作为数学常数,是自然对数函数的底数。它就像圆周率π和虚数单位i,是数学中最重要的常数之一,也是第一个被获证为超越数的非故意构造的数。 第一次提到常数e,是约翰?纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉?奥特雷德制作。第一次把e看为常数的是雅各?伯努利. 已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e 来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。 相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:欧拉取自己名字的第一个字母e作为自然对数的底。其实欧拉选择e的理由,较为多数人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;另一说法为e是“指数”一词英文的第一个字母,虽然你或许会怀疑瑞士人欧拉的母语不是英文,可事实上法文、德文的“指数”都是它。 e就是欧拉通过极限而发现的,它是个无限不循环小数,其值等于2.71828……。以e为底的对数叫做自然对数,用符号“ln”表示。当x趋于正无穷大或负无穷大时,“1加x分之一的x次方”这个函数表达式(1+1/x)^x的极限就等于e,用公式表示,即:lim(1+1/x)

^x=e(x趋于±∞) e也是“自然律”的一种量的表达。“自然律”一方面体现了自然系统朝着一片混乱方向不断瓦解的崩溃过程,另一方面又显示了生命系统只有通过一种有序化过程才能维持自身稳定和促进自身的发展的本质。“自然律”具有把有序和无序、生机与死寂寓于同一形式的特点,在美学上有重要价值。 也许e还有更深入的秘密等着我们去发掘!

自然对数的计算方法

自然对数的计算方法 作者:李治春指导老师:吴超云 摘要:本文介绍了自然对数的计算方法,包括自然对数底数e的由来、自然对数的幂级数计算方法、自然对数的连分数计算方法以及它们的比较与实现。自然对数的应用也相当广泛,它在数学、化学、物理等方面均有者重要的应用。本文根据对它最基本的元素e研究开始,逐步对其计算方法进行深入的研究。 关键词:e 幂级数连分数 1..引言 在这篇文章中,我们先从自然对数的底数e开始研究,了解它的背景,而引出自然对数,分析自然对数的计算方法,了解什么是幂级数和连分数,进而分析自然对数的幂级数计算方法和连分数计算方法,最后再比较它的计算方法,掌握它们在数学、化学、物理等方面的应用。 2.了解自然对数的背景 2.1 了解自然对数底数e的相关内容 e是一个数的代表符号。在高中数学里,我们都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm)。在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那麼是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。我们都知道复利计息是怎麼回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什麼状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。e的影响力其实还不限於数学领域。大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的。建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e。这些与计算利率或者双曲线面积八竿子打不著的问题,居然统统和e有关。 2.2 自然对数的由来与概念 例子:当x趋近于正无穷或负无穷时,[1+(1/x)]^x的极限就等于e,实际上e就是通过这个极限而发现的。 它是个无限不循环小数。其值约等于2.718281828... 它用ln a表示。a≠0。以e为底数的对数通常用于㏑。e在科学技术中用得非常多,一般不使用以10为底数的对数。以e 为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。我们可以从自然对数最早是怎么来的来说明其有多“自然”。以前人们做乘法就用乘法,很麻烦,发明了对数这个工具后,乘法可以化成加法,即:log(a * b) = loga + logb 但是能够这么做的前提是,我要有一张对数表,能够知道loga和logb是多少,然后求和,能够知道log多少等于这个和。虽然编对数表很麻烦,但是编好了就是一劳永逸的事情,因此有个大数学家开始编对数表。但他遇到了一个麻烦,就是这个对数表取多少作为底数最合适?10吗?或是2?为了决定这个底数,他做了如下考虑:1.所有乘数/被乘数都可以化到0.1-1之内的数乘

自然对数底e的由来

自然对数底e 的由来 圆周率π生活中很容易被找到或被发现,一个圆的周长与其直径的比等于圆周率π。可自然对数的底e 一直困扰着我们。高中数学中,有以10为底的对数,即常用对数。教材中曾指出,如果底数是以e 为底的对数,我们称之为自然对数,并且自然对数的底e=2.71828……是一个无理数。除此之外,我们知道甚少,e 似乎是来自纯数学的一个问题。事实上,对于自然对数的底e 是有其生活原型的。在历史上,自然对数的底e 与曾一个商人借钱的利息有关。 过去,有个商人向财主借钱,财主的条件是每借1元,一年后利息是1元,即连本带利还2元,年利率100%。利息好多喔!财主好高兴。财主想,半年的利率为50%,利息是1.5元,一年后还1.52=2. 25元。半年结一次帐,利息比原来要多。财主又想,如果一年结3次,4次,……,365次,……,岂不发财了? 财主算了算,结算3次,利率为3 1 ,1元钱一年到期的本利和是:元 37037.23113 =??? ??+,

结算4次,1元钱到一年时还元 44140.24114 =??? ??+。 财主还想,一年结算1000次,其利息是: 1000100011??? ??+ 这么大的数,年终肯定发财了。可是,财主算了算,一元钱结帐1000次,年终还的金额只有: 元 71692.21000111000=??? ??+。 这令财主大失所望。他以为,结帐次数越多,利息也就增长得越快。财主根本不知道,n n ??? ??+11的值是随n 的增大而增大,但 增加的数额极其缓慢;并且,不管结算多少次,连本带利的总和不可能突破一个上限。数学家欧拉把n n ??? ??+11极限记作e ,e=2.71828…,即自然对数的底。

自然对数底e的由来

自然对数底 e 的由来 圆周率n生活中很容易被找到或被发现,一个圆的周长与其直径的比等于圆周率n。可自然对数的底e一直困扰着我们。高中数学中,有以10 为底的对数,即常用对数。教材中曾指出, 如果底数是以e为底的对数,我们称之为自然对数,并且自然对数的底e=2.71828……是一个无理数。除此之外,我们知道甚少, e 似乎是来自纯数学的一个问题。事实上,对于自然对数的底e是有其生活原型的。在历史上,自然对数的底e与曾一个商人借钱的利息有关。 过去,有个商人向财主借钱,财主的条件是每借 1 元,一年后利息是 1 元,即连本带利还 2 元,年利率100%。利息好多 喔!财主好高兴。财主想,半年的利率为50%,利息是 1.5 元, 一年后还 1.52=2. 25元。半年结一次帐,利息比原来要多。财主又想,如果一年结3次, 4 次,……,365次,……,岂不发

财了? 财主算了算,结算3次,利率为1, 1元钱一年到期的本利 3 3 1 一和是:1 — 2.37037 兀, 3 4 结算4次,1元钱到一年时还 1 1 2.44140 元。 4 财主还想,一年结算1000次,其利息是: 1000 1 1000 这么大的数,年终肯定发财了。可是,财主算了算,一元钱结帐1000次,年终还的金额只有: 1000 1 2.71692 1000 这令财主大失所望。他以为,结帐次数越多,利息也就增长得越快。财主根本不知道,1丄"的值是随n的增大而增大,但 n

增加的数额极其缓慢;并且,不管结算多少次, 和不可能突破一个上限。数学家欧拉把1 e=2.71828…,即自然对数的底。连本带利的总 n 1 -极限记作e, n

自然对数底e的由来

自然对数底e的由来 It was last revised on January 2, 2021

自然对数底e 的由来 圆周率π生活中很容易被找到或被发现,一个圆的周长与其直径的比等于圆周率π。可自然对数的底e 一直困扰着我们。高中数学中,有以10为底的对数,即常用对数。教材中曾指出,如果底数是以e 为底的对数,我们称之为自然对数,并且自然对数的底e=……是一个无理数。除此之外,我们知道甚少,e 似乎是来自纯数学的一个问题。事实上,对于自然对数的底e 是有其生活原型的。在历史上,自然对数的底e 与曾一个商人借钱的利息有关。 过去,有个商人向财主借钱,财主的条件是每借1元,一年后利息是1元,即连本带利还2元,年利率100%。利息好多喔!财主好高兴。财主想,半年的利率为50%,利息是元,一年后还=2. 25元。半年结一次帐,利息比原来要多。财主又想,如果一年结3次,4次,……,365次,……,岂不发财了? 财主算了算,结算3次,利率为3 1 ,1元钱一年到期的本利和是:元 37037.23113 =??? ? ?+, 结算4次,1元钱到一年时还元 44140.24114=??? ??+。 财主还想,一年结算1000次,其利息是: 这么大的数,年终肯定发财了。可是,财主算了算,一元钱结帐1000次,年终还的金额只有:

元 71692.21000111000=??? ??+。 这令财主大失所望。他以为,结帐次数越多,利息也就增长得越快。财主根本不知道,n n ??? ??+11的值是随n 的增大而增大,但增加的数额极其 缓慢;并且,不管结算多少次,连本带利的总和不可能突破一个上限。数学家欧拉把n n ??? ??+11极限记作e ,e=…,即自然对数的底。

与自然对数的底e有关的问题

与自然对数的底e 有关的极限问题。 题1:回忆自然对数的底e 的定义,n n n e ??? ??+=+∞ →11lim :。证明 ∑=+∞→=n k n k e 0! 1lim ,这里约定 1!0=。 注:在级数理论里,我们通常用记号 ∑+∞ =0k k a (这个记号称作无穷级数)来表示部分和 ∑=n k k a 的极限(当然假设极限存在),即 =∑+∞ =:0 k k a ∑=+∞ →n k k n a lim 。我们将在下个学期学习无穷级数理 论。本题的意思是,数e 可以用无穷级数来表示,即∑+∞ == !1 k k e 。 证明:记∑== n k n k b 0! 1 :,则↑n b 严格。另一方面,容易看出序列}{n b 有界。这是因为 k k k k k 1 11)1(1!1--=-≤,2k ≥?。 由此我们得到 ∑∑==<-+=??? ??--+≤=m k n k n n k k k b 20311211 1 2!1。根据单调有界收敛定理可知序列}{n b 收 敛。设b b n ↑。 我们再来考虑数n n n e ?? ? ??+=+∞ →11lim :。 记n n n a ?? ? ??+=11:。经二项式展开,n a 可以表示为 ?? ? ??--??? ??-++??? ??-??? ??-+??? ??-+ =n n n n n n n a n 1111!12111!3111!212 。 (*) 由此可知n n b a <,从而有b e ≤。 以下我们证明相反的不等式b e ≥。 根据上述不等式(*),我们不难看出,对于任意正整数2≥k 和k n >,我们有 ?? ? ??--??? ??-++??? ??-??? ??-+??? ??-+ >n k n k n n n a n 1111!12111!3111!212 。 于上述不等式中,令+∞→n 立刻得到 k b e ≥,2≥?k 。再令+∞→k 就得到b e ≥。 于是有b e =。结论得证。证毕。

相关文档