文档库 最新最全的文档下载
当前位置:文档库 › 高中数学:概率模型的应用

高中数学:概率模型的应用

高中数学:概率模型的应用
高中数学:概率模型的应用

高中数学:概率模型的应用

在求解概率问题时,当题意所表述的形式难于解决时,可将该问题转化成一个熟悉的“概率模型”,从而求解,常见的解法就是转化为摸球与放球问题,使问题得以解答。

袋中有N个白球、M个黑球,现有放回地从袋中摸球,求:

(1)在n次摸球中恰好摸到k(k=0,1,…,n)个黑球的概率;

(2)第k次才摸到黑球的概率;

(3)第r次摸到的黑球是在第k次摸球时实现的概率。

解:由于袋中有N+M个球且是有放回地摸球,故每次摸球都有N+M种等可能结果(此时设想球是编了号,可区别的)。

(1)设在n次摸球中恰好模型k(k=0,1,…,n)个黑球为事件A,考虑前n次有放回摸球,共有

(N+M)n种可能,对于事件A有种不同情况,而每种情况(如前k次均摸到黑球,后n-k次摸到白球)都有种可能,又因种情况是两两互斥事件,故A

有种结果,由等可能事件概率公式得

(2)设第k次才摸到黑球为事件B,前k次摸球有(N+M)k种等可能结果,事件B的发生表明前k-1次均摸到白球有种可能,第k次才摸到黑球有M种可能,故事件B有M种可能,由等可能事件概率公式得P(B)=。

(3)设第r次摸到黑球是在第k次摸球时实现的为事件C,前k次摸球有种等可能结果。第k次摸到黑球,有M种结果,前k-1次摸球有r-1次摸到黑球,有种可能,故C事件共有M种结果。由等可能事件概率公式得P(C)=。

可化为摸球问题举例:

例1 100件产品(各不相同)中有35件次品,随机不放回地抽取5件,求:

(1)“仅后两件是次品”的概率;

(2)“有两件是次品”的概率。

分析:此问题,可将“产品”换成“球”,“次品”换成“黑球”,“件”换成“个”,“抽”换成“摸”,就变成无放回摸球问题。

解:(1)设仅后两件是次品为事件A,球各不相同,总的抽法有。则对于事件A来说,前三次抽得正品、后两次抽得次品有种可能,由等可能事件概率公式得P(A)=。

(2)设有两件是次品为事件B,则P(B)

=。

例2 一副扑克牌(除了大小王)有4种花色,每种花色13张,共52张,从中有放回地任取4张,求有两张方块的概率。

分析:把“52张牌”看成“52个球”,“方块”看成“黑球”,相当于求从52个球中有放回地摸出4个球,其中有两个黑球的概率。

解:设有放回地摸出4个球,其中有两个黑球为事件A,则套用摸球问题第一问可得P(A)

=。

例3 某数学家有两盒火柴,每盒有n根火柴,每次用火柴时,他在两盒中任取一盒并从中任取出一根,求他发现用完一盒时,另一盒还有r根(1≤r≤n)的概率。

解:由题意知数学家共用了根火柴,其中n根取自一盒,n-r根取自另一盒。于是此问题可等价转化为“个不同的球,放入两个盒子,求甲盒放n个,乙盒放n-r个的概率“,记作事件A,因每个球放入两个盒子共有2种放法。

∴2n-r个球的所有等可能结果为,甲盒放入n个球的可能结果为。即P(A)=。

从以上求解可以看到,正确地求解概率问题,必须要具备一定的排列组合知识,能熟悉和掌握必要的“概率模型”,并会灵活运用分类与讨论、转化与化归等数学思想。

▍ ▍

关于社会网络的指数随机图模型的介绍

介绍了指数随机图(P *)社交网络模型 (加里·罗宾斯,皮普派特森,尤瓦尔·卡利什,院长Lusher) 心理学系,行为科学,墨尔本大学商学院。 3010,澳大利亚 摘要: 本文提供的介绍总结,制定和应用指数随机的图模型的社交网络。网络的 各个节点之间的可能的关系被认为是随机的变量和假设,这些随机的领带变量 之间的依赖关系确定,一般形式的指数随机图模型的网络。不同的相关性假设 的例子及其相关的模型,给出了包括伯努利,对子无关,马尔可夫随机图模型。在社会选择机型演员的加入属性也被审查。更新,更复杂依赖的假设进行了简 要介绍。估计程序进行了讨论,其中包括新的方法蒙特卡罗最大似然估计。我 们预示着在其它组织了讨论论文在这款特别版:弗兰克和施特劳斯的马氏随机 图模型[弗兰克,澳,施特劳斯,D.,1986年马氏图。杂志美国统计协会81,832-842]不适合于许多观察到的网络,而Snijders等人的新的模型参数。[Snijders,TAB,派特森,P.,罗宾斯,GL,Handock,M.新规范指数随机图模型。社会学方法论,在记者]提供实质性的改善。 关键词:指数随机图模型;统计模型的社交网络; P *模型 在最近几年,出现了在指数随机图模型对于越来越大的兴趣社交网络,通常称为P *类车型(弗兰克和施特劳斯,1986;派特森和沃瑟曼,1999;罗宾斯等人,1999;沃瑟曼和帕蒂森,1996年)。这些概率模型对一组给定的演员网络 允许泛化超越了早期的P1模型类(荷兰和Leinhardt,1981年)的限制二元独立性假设。因此,它们允许模型从社会行为的结构基础的一个更为现实的构建。这些模型车的研究多层次,multitheoretical假说的有效性一直在强调(例如,承包商等,2006)。 已经有一些自Anderson等重大理论和技术的发展。(1999)介绍了他们对 P *型号知名底漆。我们总结了本文上述的进步。特别是,我们认为重要的是在概念上从依赖假设的衍生地,这些模型,模型的基本依据,然后作出了明确, 并与有关(不可观察)社会进程底层网络的形成假说更容易联系。正是通过新 的模式,可以开发一个有原则的方式,包括结合了演员的属性模型这样的做法。在模型规范和估计最近的发展需要注意的是,因为这样做就设置结构和部分新 技术的步骤依赖的假设,不仅扩大了级车型,但具有重要意义的概念。特别是,我们现在有一个更好的了解马尔可夫随机图,和有前途的新规格的性能已经提 出来克服他们的一些不足之处。 本文介绍了模型,并总结当前方法的发展与扩展概念的阐述(更多技术总 结最近被沃瑟曼和罗宾斯,2005年定;知更鸟和派特森,2005; Snijders等人,出版。)我们首先简要介绍理分析社交网络的统计模型(第1节)。然后,我 们提供指数随机图模型的基本逻辑进行了概述,并概述我们框架模型构建(第 2节)。在第3节中,我们讨论的重要概念一个依赖假设的建模方法的心脏。 在第4节中,我们提出了一系列不同的相关性假设和模型。对于模型估计(第 5章),我们简单总结伪似然估计(PLE)的方法,并检讨最近的事态发展蒙特 卡罗马尔可夫链最大似然估计方法。在第6节中,我们提出拟合模型,网络数

数学建模常用模型方法总结精品

【关键字】设计、方法、条件、动力、增长、计划、问题、系统、网络、理想、要素、工程、项目、重点、检验、分析、规划、管理、优化、中心 数学建模常用模型方法总结 无约束优化 线性规划连续优化 非线性规划 整数规划离散优化 组合优化 数学规划模型多目标规划 目标规划 动态规划从其他角度分类 网络规划 多层规划等… 运筹学模型 (优化模型) 图论模型存 储论模型排 队论模型博 弈论模型 可靠性理论模型等… 运筹学应用重点:①市场销售②生产计划③库存管理④运输问题⑤财政和会计⑥人事管理⑦设备维修、更新和可靠度、项目选择和评价⑧工程的最佳化设计⑨计算器和讯息系统⑩城市管理 优化模型四要素:①目标函数②决策变量③约束条件 ④求解方法(MATLAB--通用软件LINGO--专业软件) 聚类分析、 主成分分析 因子分析 多元分析模型判别分析 典型相关性分析 对应分析 多维标度法 概率论与数理统计模型 假设检验模型 相关分析 回归分析 方差分析 贝叶斯统计模型 时间序列分析模型 决策树 逻辑回归

传染病模型马尔萨斯人口预测模型微分方程模型人口预 测控制模型 经济增长模型Logistic 人口预测模型 战争模型等等。。 灰色预测模型 回归分析预测模型 预测分析模型差分方程模型 马尔可夫预测模型 时间序列模型 插值拟合模型 神经网络模型 系统动力学模型(SD) 模糊综合评判法模型 数据包络分析 综合评价与决策方法灰色关联度 主成分分析 秩和比综合评价法 理想解读法等 旅行商(TSP)问题模型 背包问题模型车辆路 径问题模型 物流中心选址问题模型 经典NP问题模型路径规划问题模型 着色图问题模型多目 标优化问题模型 车间生产调度问题模型 最优树问题模型二次分 配问题模型 模拟退火算法(SA) 遗传算法(GA) 智能算法 蚁群算法(ACA) (启发式) 常用算法模型神经网络算法 蒙特卡罗算法元 胞自动机算法穷 举搜索算法小波 分析算法 确定性数学模型 三类数学模型随机性数学模型 模糊性数学模型

概率图模型研究进展综述

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.wendangku.net/doc/ed18592906.html, Journal of Software,2013,24(11):2476?2497 [doi: 10.3724/SP.J.1001.2013.04486] https://www.wendangku.net/doc/ed18592906.html, +86-10-62562563 ?中国科学院软件研究所版权所有. Tel/Fax: ? 概率图模型研究进展综述 张宏毅1,2, 王立威1,2, 陈瑜希1,2 1(机器感知与智能教育部重点实验室(北京大学),北京 100871) 2(北京大学信息科学技术学院智能科学系,北京 100871) 通讯作者: 张宏毅, E-mail: hongyi.zhang.pku@https://www.wendangku.net/doc/ed18592906.html, 摘要: 概率图模型作为一类有力的工具,能够简洁地表示复杂的概率分布,有效地(近似)计算边缘分布和条件分 布,方便地学习概率模型中的参数和超参数.因此,它作为一种处理不确定性的形式化方法,被广泛应用于需要进行 自动的概率推理的场合,例如计算机视觉、自然语言处理.回顾了有关概率图模型的表示、推理和学习的基本概念 和主要结果,并详细介绍了这些方法在两种重要的概率模型中的应用.还回顾了在加速经典近似推理算法方面的新 进展.最后讨论了相关方向的研究前景. 关键词: 概率图模型;概率推理;机器学习 中图法分类号: TP181文献标识码: A 中文引用格式: 张宏毅,王立威,陈瑜希.概率图模型研究进展综述.软件学报,2013,24(11):2476?2497.https://www.wendangku.net/doc/ed18592906.html,/ 1000-9825/4486.htm 英文引用格式: Zhang HY, Wang LW, Chen YX. Research progress of probabilistic graphical models: A survey. Ruan Jian Xue Bao/Journal of Software, 2013,24(11):2476?2497 (in Chinese).https://www.wendangku.net/doc/ed18592906.html,/1000-9825/4486.htm Research Progress of Probabilistic Graphical Models: A Survey ZHANG Hong-Yi1,2, WANG Li-Wei1,2, CHEN Yu-Xi1,2 1(Key Laboratory of Machine Perception (Peking University), Ministry of Education, Beijing 100871, China) 2(Department of Machine Intelligence, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China) Corresponding author: ZHANG Hong-Yi, E-mail: hongyi.zhang.pku@https://www.wendangku.net/doc/ed18592906.html, Abstract: Probabilistic graphical models are powerful tools for compactly representing complex probability distributions, efficiently computing (approximate) marginal and conditional distributions, and conveniently learning parameters and hyperparameters in probabilistic models. As a result, they have been widely used in applications that require some sort of automated probabilistic reasoning, such as computer vision and natural language processing, as a formal approach to deal with uncertainty. This paper surveys the basic concepts and key results of representation, inference and learning in probabilistic graphical models, and demonstrates their uses in two important probabilistic models. It also reviews some recent advances in speeding up classic approximate inference algorithms, followed by a discussion of promising research directions. Key words: probabilistic graphical model; probabilistic reasoning; machine learning 我们工作和生活中的许多问题都需要通过推理来解决.通过推理,我们综合已有的信息,对我们感兴趣的未 知量做出估计,或者决定采取某种行动.例如,程序员通过观察程序在测试中的输出判断程序是否有错误以及需 要进一步调试的代码位置,医生通过患者的自我报告、患者体征、医学检测结果和流行病爆发的状态判断患者 可能罹患的疾病.一直以来,计算机科学都在努力将推理自动化,例如,编写能够自动对程序进行测试并且诊断 ?基金项目: 国家自然科学基金(61222307, 61075003) 收稿时间:2013-07-17; 修改时间: 2013-08-02; 定稿时间: 2013-08-27

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

多元随机过程的建模与谱估计

第七章 多元随机过程的建模与谱估计 7.1 多元随机过程的表示 l 维平稳随机向量过程)(n Y 由l 个平稳随机过程构成 T l n y n y n y n Y )](,),(),([)(21 = (7-1) 其二阶特性由均值向量Y μ: {}T y y y Y l n Y E ],,,[)(2 1 μμμμ == (7-2) 和协方差矩阵()Y C m : {}()[()][()]T Y Y Y C m E Y n Y n m μμ=-+-111212122212()() ()()() ()()() ()l l l l l l y y y y y y y y y y y y y y y y y y C m C m C m C m C m C m C m C m C m ?? ? ? ?? =? ??? ???? (7-3) 决定,其中)(m C j i y y 是随机过程)(n y i 和)(n y j 的协方差,即 {} ()[()][()]i j i j y y i y j y C m E y n y n m μμ=-+-,l j l i ≤≤≤≤1,1 由于 )(m C j i y y ()i j y y R m =i j y y μμ+,l j l i ≤≤≤≤1,1 因此,协方差矩阵()Y C m 又可表示为 ()Y C m ()T Y Y Y R m μμ=- (7-4) 其中,()Y R m 为l 维平稳随机向量过程)(n Y 的自相关矩阵。该矩阵中的第i 行第j 列元素是随机过程)(n y i 和)(n y j 的互相关函数)(m R j i y y ,即 ()Y R m 1112121 22212()() ()()()()()()()l l l l l l y y y y y y y y y y y y y y y y y y l l R m R m R m R m R m R m R m R m R m ???????=?? ?? ???? (7-5) 当)(n Y 的均值为零时,协方差矩阵)(m C Y 与互相关矩阵)(m R Y 相等。一般情况下,总是将随机向 量减去其均值向量估计,构成一个零均值的、新的随机向量。然后对新的随机向量进行各种分析。 举例,l 维白噪声向量)(n W 的二阶特征量为: ,0 0,()0,0W W W Q m C m m μ=?==? ≠? 其中W Q 为常数矩阵。若白噪声向量)(n W 的个分量互不相关,则其协方差矩阵W Q 是对角矩阵,即 12 22 2 [,,,]l W w w w Q diag σσσ= (7-6) 互相关矩阵性质: 1) ()()T Y Y R m R m =- (7-7) 【证明:因为,{} ()()()i j y y i j R m E y n y n m =+{} ()()j i E y n y n m =-()j i y y R m =-,所以 (){()}{()}{()}()i j j i i j T T Y y y l l y y l l y y l l Y R m R m R m R m R m ???==-=-=- 】 2)(0)Y R 是非负定的 【证明:用l 个不全为零的实数i a ,1,2, ,i l =,作随机过程

新资本协议中违约概率模型的研究及应用

新资本协议中违约概率模型的研究与应用 Research and Application of PD Model in New Basel Capi tal Accord 武剑王健内容摘要:巴塞尔新资本协议实施在即,新资本协议与往常版本的重大突破在于它倡导使用内部评级法(IRB)以加强风险监管的敏感性。而客户违约概率(PD)的准确计算正是内部评级法的核心内容。本文就详尽介绍了违约概率的概念、定义,计算违约概率的进展过程;并重点研究分析了一些较为成熟的违约概率计算模型和数学统计方法,并结合建行违约概率计算的应用提出一

些经验之谈,同时对国内商业银行客户违约概率研究的进展提出了建设性的意见。 关键词:内部评级法违约概率违约数据 背景 巴塞尔新资本协议立即于2003年底正式公布,并拟于200 6年在各成员国实施。新资本协议首次提出了涵盖“三大支柱”(资本充足率、市场监管和市场纪律)的监管框架,进一步充实了金融风险监管的内容和方式,这将对业以后进展产生重大和深远的阻碍。新资本协议的核心内容是内部评级法(IRB法),同意治理水平高的银行采纳IRB法计算资本充足率,从而将资本充足率与银行信用风险的大小紧密结合起来。能够讲,满足资本监管的IRB法代表了巴塞尔委员会认可的并希望商业银行,特不是大银行今后广泛采纳的内部评级体系。IRB法代表了信用风险治理技术进展的大方向。在新协议的推动下,许多国家的银行都在积极开发IRB法,力争在2006年达标。银监会也差不多明确指出,各家商业银行应该尽早着手收集内部评级体系所需的各项必要信息,为今后采纳定量分析方法监测、治理信用风险做好基础性工作。在一段时刻之后,如银行条件具备,银监会将考虑使用

随机过程

《随机过程》课程教学大纲 课程编号:02200021 课程名称:随机过程 英文名称:Stochastic Processes 课程类别:选修课 总学时:72 讲课学时:68 习题课学时:4 学分: 4 适用对象:数学与应用数学、信息与计算科学专业 先修课程:数学分析、高等代数、概率论与数理统计 一、课程简介 随机过程是研究客观世界中随机演变过程规律性的学科,它的基本知识和方法不仅为数学、概率统计专业所必需,也为工程技术、生物信息及经济领域的应用和研究所需要。本课程介绍随 机过程研究领域的一些基础而重要的知识和技能。 二、课程性质、目的和任务 随机过程是概率论的后续课程,具有比概率理论更加实用的应用方面,处理问题也更加贴近实际情况。通过这门课程的学习,使学生了解随机过程的基本概念,掌握最常见而又有重要应用 价值的诸如Poisson过程、更新过程、Markov过程、Brown运动的基本性质,能够处理基本的随 机算法。提高学生利用概率理论数学模型解决随机问题的能力。通过本课程的学习,可以让数学 专业的学生很方便地转向在金融管理、电子通讯等应用领域的研究。 三、课程基本要求 通过本课程的学习,要求学生掌握随机过程的一般概念,知道常见的几类随机过程的定义、背景和性质;掌握泊松过程的定义与基本性质,了解它的实际背景,熟悉它的若干推广;掌握更 新过程的定义与基本性质、更新函数、更新方程,了解更新定理及其应用,知道更新过程的若干 推广;掌握离散时间的马尔可夫链的基本概念,熟练掌握转移概率、状态分类与性质,熟悉极限 分布、平稳分布与状态空间的分解,了解分枝过程;掌握连续时间的马尔可夫链的定义、柯尔莫 哥洛夫方程;掌握布朗运动的定义与基本性质,熟悉随机积分的定义与基本性质,了解扩散过程 与伊藤公式,会求解一些简单的随机微分方程。 四、教学内容及要求 第一章预备知识 §1.概率空间;§2.随机变量和分布函数;§3.数字特征、矩母函数和特征函数;§4. 条件概率、条件期望和独立性;§5.收敛性 教学要求:本章主要是对概率论课程的复习和巩固,为后续学习做准备。 第二章随机过程的基本概念和类型

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结 航天学院探测制导与控制技术杨若眉1110420123 摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。 关键词:最大似然估计;离散;连续;概率密度最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

概率图模型介绍与计算

概率图模型介绍与计算 01 简单介绍 概率图模型是图论和概率论结合的产物,它的开创者是鼎鼎大名的Judea Pearl,我十分喜欢概率图模型这个工具,它是一个很有力的多变量而且变量关系可视化的建模工具,主要包括两个大方向:无向图模型和有向图模型。无向图模型又称马氏网络,它的应用很多,有典型的基于马尔科夫随机场的图像处理,图像分割,立体匹配等,也有和机器学习结合求取模型参数的结构化学习方法。严格的说他们都是在求后验概率:p(y|x),即给定数据判定每种标签y的概率,最后选取最大的后验概率最大的标签作为预测结果。这个过程也称概率推理(probabilistic inference)。而有向图的应用也很广,有向图又称贝叶斯网络(bayes networks),说到贝叶斯就足以可以预见这个模型的应用范围咯,比如医疗诊断,绝大多数的机器学习等。但是它也有一些争议的地方,说到这就回到贝叶斯派和频率派几百年的争议这个大话题上去了,因为贝叶斯派假设了一些先验概率,而频率派认为这个先验有点主观,频率派认为模型的参数是客观存在的,假设先验分布就有点武断,用贝叶斯模型预测的结果就有点“水分”,不适用于比较严格的领域,比如精密制造,法律行业等。好吧,如果不遵循贝叶斯观点,前面讲的所有机器学习模型都可以dismiss咯,我们就通过大量数据统计先验来弥补这点“缺陷”吧。无向图和有向图的例子如(图一)所示: 图一(a)无向图(隐马尔科夫)(b)有向图 概率图模型吸取了图论和概率二者的长处,图论在许多计算领域中扮演着重要角色,比如组合优化,统计物理,经济等。图的每个节点都可看成一个变量,每个变量有N个状态(取值范围),节点之间的边表示变量之间的关系,它除了

概率论知识点总结

概率论知识点总结 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω、样本空间:所有样本点组成的集合称为样本空间、样本空间用Ω表示、一个随机事件就是样本空间的一个子集。基本事件多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件A 发生必然导致事件B发生,则称B包含A,记为或。 相等关系:若且,则称事件A与事件B相等,记为A=B。事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。事件的差:称事件“事件A发生而事件B不发生”为事件A 与事件B的差事件,记为 A-B。用交并补可以表示为。互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时可记为A+B。对立事

件:称事件“A不发生”为事件A的对立事件(逆事件),记为。对立事件的性质:。事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律: A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律): 第二节事件的概率概率的公理化体系:(1)非负性: P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时当AB=Φ时P(A∪B)=P(A)+P(B)(3)(4)P(A-B)=P(A)- P(AB)(5)P(A∪B)=P(A)+P(B)-P(AB)第三节古典概率模型 1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成、则定义事件A的概率为 2、几何概率:设事件A是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可、第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B)、乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则

概率初步知识点总结和题型

概率初步知识点和题型 【知识梳理】 1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中, ①必然事件发生的概率为1,即P(必然事件)=1; ②不可能事件发生的概率为0,即P(不可能事件)=0; ③如果A为不确定事件,那么0

3.概率应用: 通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。 【练习】 随机事件与概率: 一. 选择题 1. 下列事件必然发生的是() A. 一个普通正方体骰子掷三次和为19 B. 一副洗好的扑克牌任抽一张为奇数。 C. 今天下雨。 D. 一个不透明的袋子里装有4个红球,2个白球,从中任取3个球,其中至少有2球同色。 2. 甲袋中装着1个红球9个白球,乙袋中装着9个红球1个白球,两个口袋中的球都已搅匀。想从两个口袋中摸出一个红球,那么选哪一个口袋成功的机会较大?() A. 甲袋 B. 乙袋 C. 两个都一样 D. 两个都不行 3. 下列事件中,属于确定事件的是() A. 发射运载火箭成功 B. 2008年,中国女足取得冠军 C. 闪电、雷声出现时,先看到闪电,后听到雷声 D. 掷骰子时,点数“6”朝上 4. 下列事件中,属于不确定的事件的是() A. 英文字母共28个 B. 某人连续两次购买两张彩票,均中头奖 C. 掷两个正四面体骰子(每面分别标有数字1,2,3,4)接触地面的数字和为9 D. 哈尔滨的冬天会下雪 5. 下列事件中属于不可能的事件是() A. 军训时某同学打靶击中靶心 B. 对于有理数x,∣x∣≤0 C. 一年中有365天 D. 你将来长到4米高 6、一个袋子中放有红球、绿球若干个,黄球5个,如果袋子中任意摸出黄球的概率为0.25, 那么袋子中共有球的个数为() A. 15 B. 18 C. 20 D. 25 用列举法求概率: 填空题:

各种概率分布及应用场合(建模对象)

1、高斯分布 高斯分布是最常见的分布,我现在觉得高斯分布中最难的就是,如何说服别人,你假设某个分布是高斯,是有依据的,而不是一个所谓的“经验假设”。 高斯分布的概率密度函数为: 各种各样的心理学测试分数、各种各样的无力现象、测量误差等都被发现近似地服从正态分布。尽管这些现象的根本原因经常是未知的,但是理论上可以证明如果把许多小作用加起来看做一个变量,那么这个变量服从正态分布。 由正态分布还可以到处一些常见的分布: 2、伯努利分布(又称:两点分布,0-1分布) 均值为p,方差为p(1-p). 这是为纪念瑞士科学家伯努利而命名的,猜测应该与伯努利本人没有太大关系吧,哈哈。 3、二项分布

进行独立的n次伯努利实验得到。均值为np,方差为np(1-p)。 与高斯分布的关系:当n足够大时,且p不接近于0或1,则二项分布近似为高斯分布,且n越大越近似。 4、多项分布 与二项分布对应,每次独立事件会出现3个及3个以上可能值。 二项分布和多项分布的概率值都可以经过计算多项式(x1+x2)^n 和多项式 (x1+x2+...+xm)^n的通项得到,对于二项分布,此时的x1=p,x2=1-p。 5、泊松分布 参考资料: https://www.wendangku.net/doc/ed18592906.html,/wiki/%E6%B3%8A%E6%9D%BE%E5%88%86%E5%B8%83 泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数等等。 概率质量函数为:(区分概率质量函数和概率密度函数,概率质量函数-离散,是概率值;概率密度-连续,不是概率值)

数学建模_四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

概率论中几种概率模型方法总结

概率论中几种概率模型方法总结 绪论:概率论中几种常用的概率模型是古典概型、几何概型、贝努里概型.本文对概率论中几种概率模型方法进行了总结。 1 古典概型 古典概型及其概率是概率论的基础知识,它既是进一步学习概率的基础,下面就一些典型事件的分析来说明古典概型的概率计算方法。古典概型的概率计算可以分为三个步骤:确定所研究的对象为古典概型;计算样本点数;利用公式计算概率。即如果随机试验只有有限个可能结果,而且每一个可能结果出现的可能性相同,那么这样的随机试验就是古典概型问题。若设Ω是一个古典概型样本空间, 则对任意事件A 有: A m P ( A ) ==Q n 中的样本点数中的样本点数。在计算m 和n 时,经常使用排列与组合计算公式。在确定一个试验的每个基本事件发生的可能性相同时,经常根据问题本身所具有的某种“对称性”,即利用人们长期积累的关于“对称性”的实际经验,认为某些基本事件发生的可能性没有理由偏大或偏小。关于古典概型的数学模型如下: 1.1 袋中取球问题 1.1.1 随机地同时从袋中取若干球问题 随机地同时从袋中取若干球问题是古典概型中的一类最基本问题,其特点是所考虑的事件中只涉及球的结构而不涉及取球的先后顺序,计算样本点数时只需考虑组合数即可。概率中的很多问题常常可以归结为此类问题来解决。 事件1 一袋中有m + n 个球,其中m 个黑球, n 个白球,现随机地从袋中取出k 个球( k ≤m + n) ,求其中恰好有l 个白球( l ≤n)的概率。 分析:随机地从袋中取出k 个球有k m+n C 种可能的结果,其中“恰好有l 个白球”这 一事件包含了l k-l n m C C 种结果,因此所求概率为l k - l n m k m + n C C P =C 这个结论可以作为一个公式来应用。用它可以解决一些类似的问题。 1.1.2 随机地从袋中不放回地取球若干次 随机地从袋中不放回地取球若干次就是指随机地从袋中每次只取一个球,取后不再放回袋中,连续进行若干次。这样的取球过程实际上是按顺序取的,所考虑的事件也会涉及到取球的顺序,所以要用排列数计算样本点数。 事件2 一袋中装有m + n 个球,其中m 个黑球, n 个白球,现随机地从中每次取出一

107521-概率统计随机过程课件-第一章(第二节)古典概率

第一章随机事件的概率 第二节概率的定义及性质 所谓随机事件的概率,概括地说就是用来描述随机事件出现(或发生)的可能性大小的数量指标. 其实概率的思想术语在我们日常生活中经常出现.对未来的不确定事件,我们经说有把握、希望、机会有多大,高考上线率,各种升学率等.“不怕一万,就怕万一”,就是人们对确定事件和不确定事件的认识,为此提前作出的思想准备,表明人类的智慧与先见之明。 古代智人(周文王,姜子牙,诸葛亮,刘伯温等)的掐指一算,就是算的样本空间和随机事件的概率。 数学上只能对简单的随机现象进行概率定义,复杂的随机现象有

待于研究. 随机事件在一次试验中既可能发生,也可能不发生,似乎无什么规律。 如果在相同的条件下,把一个试验重复做许多次,我们一定会发现,某些事件发生的次数多一些,而另一些事件发生的次数少一些。表现出一定的规律性。例如买彩票时投注号码,有极少一部分人能预感到中奖号码的规律。 例如,将一颗骰子重复投掷100次,毫无疑问,事件“出现奇数点”比事件“出现1点”发生的次数会多得多。那么,发生次数多的事件在每次试验中发生的可能性大一些,而发生次数少的事件在每次试验中发生的可能性小一些。 问题是:如何度量事件发生可能性的大小?

对于事件A ,如果实数)(A P 满足: (1)数)(A P 的大小表示事件A 发生可能性的大小; (2))(A P 是事件A 所固有的,不随人们主观意志而改变的一种度量。 那么数)(A P 称为事件A 的概率。它是事件A 发生可能性的度量。 在本节中,我们首先介绍一类 最简单的概率模型,然后逐步引出概率的一般定义。 一、 概率的古典定义 古典型随机试验: 如果试验E 的样本空间S 只包 含有限个基本事件, 设},,,{21n e e e S , 并且每个基本事件发生的可能性相

三国杀随机过程建模研究

基于随机过程的三国杀分析 张鹏缪雨壮洪杰 钟科杰许晨 2010-11-30

目录 1 课题背景 (4) 2 研究目的与报告结构 (4) 3 闪电命中概率 (5) 3.1 背景知识 (5) 3.2 建模场景 (5) 3.3 理论分析 (5) 3.4 仿真结果及讨论 (6) 4 司马懿对甄姬洛神技能的影响 (6) 4.1 背景知识 (6) 4.2 建模场景 (7) 4.3 理论分析 (7) 4.4 仿真结果及讨论 (8) 5 陆逊爆发力 (12) 5.1 背景知识 (12) 5.2 建模场景 (13) 5.3 理论分析 (13) 5.4 仿真结果及讨论 (15) 6 黄盖寿命及攻击力 (17) 6.1 背景知识 (17) 6.2 理论分析 (18) 6.3 仿真结果及讨论 (19) 6.4 补充拓展 (21) 7 郭嘉存活力 (24) 7.1 背景知识 (24) 7.2 建模场景 (25) 7.3 理论分析 (25) 7.4 仿真结果及讨论 (29) 8 周泰存活力 (31) 8.1 背景知识 (31) 8.2 建模场景 (32)

8.3 理论分析 (32) 8.4 仿真结果及讨论 (33) 9 黄月英爆发力 (35) 9.1 背景知识 (35) 9.2 建模场景 (35) 9.3 理论分析 (35) 9.4 仿真结果及讨论 (37) 10 总结 (38) 10.1 课题总结 (38) 10.2 学习感悟 (39) 11 成员分工情况 (39)

1 课题背景 随机过程,作为对一连串随机事件动态关系的定量描述,在自然科学、工程科学以及社会科学各领域具有重要应用。 数学上的随机过程是由实际随机过程概念引起的一种数学结构。人们研究这种过程,是因为它是实际随机过程的数学模型,或者是因为它的内在数学意义以及它在概率论领域之外的应用。随机过程的概念很广泛,因而随机过程的研究几乎包括概率论的全部。虽然不能给出一个有用而又狭窄的定义,但是概率论工作者在使用随机过程这个术语时,通常想到的是其随机变量具有某种有意义的相互关系的随机过程。由于这些过程类在数学上和非数学上的应用中十分重要,用这种理论工具,可以对常见的过程进行分析,进行一系列随机计算,从而可以将随机过程这一理论工具应用到实际中去,可以进行预测与决策,是相关数学模型的理论基础。 本课题选取三国杀桌牌游戏为研究对象,利用随机过程理论进行几个特定场景模式下的人物特性、角色相互关系的建模分析。正是由于摸牌结果的随机性、策略之间的牵制性,游戏过程往往涉及到随机概率、马尔可夫过程等概念;在研究某一问题的统计平均值时,又建模为随机变量的期望值求解。显然,基于随机过程的理论研究方法,可以得到一些三国杀游戏中的规律性认识。 2 研究目的与报告结构 将随机过程应用于对三国杀的建模分析,可以使我们在理解基本概念和方法的基础上,获得更灵活的对随机事件相互关系的探究;能够深刻体会随机过程在生活实际中的运用;并且,熟练掌握利用建模思想,解决问题的方法。当然,对于游戏的取胜功略方面,研究结果也将是颇有指导意义的。 下面的章节将分不同人物及场景来进行相关内容的阐述。其中,3~9节分别对闪电命中概率、司马懿对甄姬洛神技能的影响、陆逊爆发力、黄盖寿命及攻击力、郭嘉存活力、周泰存活力、黄月英爆发力几个问题进行了理论分析,并给出了仿真结果和必要的讨论。综合性的总结在第10节给出。第11节是小组内部成员的分工情况。

相关文档
相关文档 最新文档