文档库 最新最全的文档下载
当前位置:文档库 › 微积分(曹定华)(修订版)课后题答案第六章习题详解

微积分(曹定华)(修订版)课后题答案第六章习题详解

微积分(曹定华)(修订版)课后题答案第六章习题详解
微积分(曹定华)(修订版)课后题答案第六章习题详解

微积分 课后习题答案

习题1—1解答 1. 设y x xy y x f + =),(,求) ,(1 ),,(),1,1(),,(y x f y x xy f y x f y x f -- 解y x xy y x f + =--),(;x xy y y x f y x y x xy f x y xy y x f += +=+=2 2 2 ) ,(1; ),(;1)1,1( 2. 设y x y x f ln ln ),(=,证明:),(),(),(),(),(v y f u y f v x f u x f uv xy f +++= ) ,(),(),(),(ln ln ln ln ln ln ln ln )ln )(ln ln (ln )ln()ln(),(v y f u y f v x f u x f v y u y v x u x v u y x uv xy uv xy f +++=?+?+?+?=++=?= 3. 求下列函数的定义域,并画出定义域的图形: (1);11),(2 2 -+ -= y x y x f (2);) 1ln(4),(2 2 2 y x y x y x f ---= (3);1),(2 22 22 2c z b y a x y x f - - -= (4).1),,(2 2 2 z y x z y x z y x f ---+ + = 解(1)}1,1),{(≥≤=y x y x D (2) { y y x y x D ,10),(22<+<=

(3) ????++=),(2 2222b y a x y x D (4){} 1,0,0,0),,(222<++≥≥≥=z y x z y x z y x D 4.求下列各极限: (1)2 2 1 01lim y x xy y x +-→→= 11 001=+- (2)2ln 01)1ln(ln(lim 2 2 )0 1=++= ++→→e y x e x y y x (3)4 1) 42() 42)(42(lim 42lim 00 0- =++ +++- =+- →→→→xy xy xy xy xy xy y x y x (4)2)sin(lim )sin(lim 20 2=?=→→→→x xy xy y xy y x y x 5.证明下列极限不存在: (1);lim 0y x y x y x -+→→ (2)2 2 2 2 20 0) (lim y x y x y x y x -+→→ (1)证明 如果动点),(y x P 沿x y 2=趋向)0,0( 则322lim lim 20 -=-+=-+→→=→x x x x y x y x x x y x ; 如果动点),(y x P 沿y x 2=趋向)0,0(,则33lim lim 20 ==-+→→=→y y y x y x y y x y

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分22 π π-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 20 1 lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设2 ,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞ ? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 22y x x π π??=-≤≤ ???与x 轴所围成图形绕着x 轴 旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2 ;3 3 0; 4 0. 三、 1 解 原式205lim 3x x x x →?= 5分 5 3 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分

微积分第五章第六章习题答案

习题5.1 1.(1) sin x x ;3sin x (2)无穷多 ;常数(3)所有原函数(4)平行 2. 23x ;6x 3.(1)3223 x C --+(2)323sin 3x x e x C +-+(3)3132221(1565(2))15x x x x C -++-+ (4 2103)x x C -++ (5)4cos 3ln x x C -++(6)3 23 x x ex C +-+ (7) sin 22 x x C -+(8 )5cos x x C --+ 4. 3113y x =+ 5. 32()0.0000020.0034100C x x x x =-++;(500)1600;(400)(200)552C C C =-= 习题5.2 1.(1)1a (2)17(3)110(4)12-(5)112(6)12(7)2-(8)15(9)-(10)12 - 2. (1)515t e C + (2)41(32)8x C --+(3)1ln 122x C --+(4)231(23)2 x C --+ (5 )C -(6)ln ln ln x C +(7)111tan 11x C +(8)212 x e C --+ (9)ln cos ln sin x x C -++(10 )ln C -+(11)3sec sec 3 x x C -++ (12 )C (13)43ln 14x C --+(14)2sec 2 x C + (15 12arcsin 23x C + (16)229ln(9)22 x x C -++ (17 C (18)ln 2ln 133 x x C -+-+ (19)2()sin(2())4t t C ?ω?ωω++++ (20)3cos ()3t C ?ωω +-+ (21)cos 1cos5210x x C -+ (22)13sin sin 232x x C ++(23)11sin 2sin12424 x x C -+ 习题5.3 1.(1)arcsin ,,u x dv dx v x === (2),sin ,cos u x dv xdx v x ===-

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

微积分课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+13 1 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+11 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为 1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2) Q n S =+++L 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4)Q 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而11 12n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5)Q ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6)Q 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7)Q 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8)Q (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:Q (1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且其 和为1+ 12=3 2 . (2)Q 11121(1)(2)212n n n n n n ?? =-+ ?++++??

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

高等数学课后习题与解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

大学高等数学上考试题库及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( B ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( B ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( C ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( D ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( C ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( A ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( A ).

高等数学第七章微分方程试题及答案

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

微积分--课后习题答案

习题1—1解答 1. 设y x xy y x f + =),(,求) ,(1),,(),1,1(),,(y x f y x xy f y x f y x f -- 解y x xy y x f + =--),(;x xy y y x f y x y x xy f x y xy y x f +=+=+=222),(1;),(;1)1,1( 2. 设y x y x f ln ln ),(=,证明:),(),(),(),(),(v y f u y f v x f u x f uv xy f +++= ) ,(),(),(),(ln ln ln ln ln ln ln ln )ln )(ln ln (ln )ln()ln(),(v y f u y f v x f u x f v y u y v x u x v u y x uv xy uv xy f +++=?+?+?+?=++=?= 3. 求下列函数的定义域,并画出定义域的图形: (1);11),(22-+-=y x y x f (2);) 1ln(4),(222y x y x y x f ---= (3);1),(22 2222c z b y a x y x f ---= (4).1),,(2 2 2 z y x z y x z y x f ---++= 解(1) (2) (3) (4) 4(1)1 lim y x →→(2)lim 1→→y x

(3)41 )42()42)(42(lim 42lim 000-=+++++-=+-→→→→xy xy xy xy xy xy y x y x (4)2) sin(lim )sin(lim 202=?=→→→→x xy xy y xy y x y x 5.证明下列极限不存在: (1);lim 0 0y x y x y x -+→→ (2)22 22200)(lim y x y x y x y x -+→→ (1)证明 如果动点),(y x P 沿x y 2=趋向)0,0( 则322lim lim 00 20-=-+=-+→→=→x x x x y x y x x x y x ; 如果动点),(y x P 沿y x 2=趋向)0,0(,则33lim lim 00 20==-+→→=→y y y x y x y y x y 所以极限不存在。 (2)证明 如果动点),(y x P 沿x y =趋向)0,0( 则1lim )(lim 44 022 2220 0==-+→→=→x x y x y x y x x x y x ; 如果动点),(y x P 沿x y 2=趋向)0,0(,则044lim )(lim 244 0222220 20=+=-+→→=→x x x y x y x y x x x y x 所以极限不存在。 6.指出下列函数的间断点: (1)x y x y y x f 22),(2-+=; (2)y x z -=ln 。 解 (1)为使函数表达式有意义,需022 ≠-x y ,所以在022 =-x y 处,函数间断。 (2)为使函数表达式有意义,需y x ≠,所以在y x =处,函数间断。 习题1—2 1.(1)x y y x z += ,21x y y x z -=??,2 1y x x y z -=??. (2) )]2sin()[cos()sin()cos(2)cos(xy xy y xy xy y xy y x z -=-=?? )]2sin()[cos()sin()cos(2)cos(xy xy x xy xy x xy x y z -=-=??

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

近十份大学微积分下期末试题汇总(含答案)

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷 一 、填空题(每小题5分,共25分,把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a = ,3b = ,3a b ?= ,则a b += . 3.设(,)f u v 可微,(,)y x z f x y =,则dz = . 4.设()f x 在[0,1]上连续,且()f x >0, a 与b 为常数.()}{,01,01D x y x y = ≤≤≤≤,则 ()() ()() D af x bf y d f x f y σ++?? = . 5.设(,)f x y 为连续函数,交换二次积分次序 2220 (,)x x dx f x y dy -=? ? . 二 、选择题(每小题5分,共20分,在每小题给出的四个选项中只有一个是符合题 目要求的,把所选字母填入题后的括号内) 6.直线l 1: 155 121x y z --+==-与直线l 2:623 x y y z -=??+=?的夹角为 (A ) 2π . (B )3π . (C )4π . (D )6 π . [ ] 7.设(,)f x y 为连续函数,极坐标系中的二次积分 cos 2 0d (cos ,sin )d f r r r r π θθθθ? ? 可以写成直角坐标中的二次积分为 (A )100(,)dy f x y dx ?? (B )1 00(,)dy f x y dx ?? (C ) 10 (,)dx f x y dy ? ? (D )10 (,)dx f x y dy ?? [ ] 8.设1, 02 ()122, 12 x x f x x x ? ≤≤??=??-≤?? ()S x 为()f x 的以2为周期的余弦级数,则5()2S -= (A ) 12. (B )12-. (C )34. (D )3 4 -. [ ] <

安徽大学高等数学期末试卷和答案

安徽大学2011—2012 学年第一学期 《高等数学A(三)》考试试卷(A 卷) (闭卷时间120 分钟) 考场登记表序号 题号一二三四五总分 得分 阅卷人 一、选择题(每小题2 分,共10 分)得分 1.设A为n阶可逆矩阵,则下列各式正确的是()。 (A)(2A)?1 =2A?1 ;(B)(2A?1)T=(2A T)?1 ;(C) ((A?1)?1)T=((A T)?1)?1 ;(D)((A T)T)?1 =((A?1)?1)T。 2.若向量组1, 2 , , r ααα可由另一向量组 ()。 βββ线性表示,则下列说法正确的 是 1, 2 , , sβββ线性表示,则下列说法 正确的是 (A)r≤s;(B)r≥s; (C)秩( 1, 2 , , r1, 2 , , s1, 2 , , r ααα)≤秩(βββ);(D)秩(ααα)≥ 秩( ββ β)。 1, 2 , , sββ β)。 3.设A, B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则下列说法正确的是()。 (A)λE?A=λE?B; (B)A与B有相同的特征值和特征向量; (C)A与B都相似于一个对角矩阵; (D)对任意常数k,kE?A与kE?B相似。 4.设1, 2 , 3 ααα为R3 的一组基,则下列向量组中,()可作为R3 的另一组基。 (A)1, 1 2 ,3 1 2 1, 2 ,2 1 2 α+αα+αα+α。 αα?αα?α;(B)ααα+α; (C) 1 2 , 2 3, 1 3 α+αα+αα?α;(D) 1 2 , 2 3, 1 3 5.设P(A) =0.8 ,P(B) =0.7 ,P(A| B) =0.8 ,则下列结论正确的是()。

电子科技大学微积分试题及答案

电子科技大学期末微积分 一、选择题(每题2分) 1、设x ?()定义域为(1,2),则lg x ?()的定义域为() A 、(0,lg2) B 、(0,lg2] C 、(10,100) D 、(1,2) 2、x=-1是函数x ?()=() 22 1x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点 3、试求02lim x x →等于() A 、-1 4 B 、0 C 、1 D 、∞ 4、若 1y x x y +=,求y '等于() A 、 22x y y x -- B 、22y x y x -- C 、22y x x y -- D 、22x y x y +- 5、曲线2 21x y x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射() A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+ C 、2y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、 __________ 2、、2(1))lim ()1 x n x f x f x nx →∞-=+设 (,则 的间断点为__________ 3、21lim 51x x bx a x →++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________

5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 2 1x y x =+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、lim β βαα =∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin x y x =求函数 的导数 2、21 ()arctan ln(12 f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、 计算 6、2 1 lim(cos )x x x + →计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润 最大的情况下,总税额最大(8分) 2、描绘函数21 y x x =+ 的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01 lim (),lim ()x x f x A f A x +→+∞→==则

《高数(同济六版)》第七章 微分方程--参考答案

第七章 微分方程—练习题参考答案 一、填空题 1. 三阶; 2. 023=+'-''y y y ; 3. 1-=' x y y ; 4. x e 22ln ? ; 5. x x e c e c 221-+; 6. 错误 、错误、错误、正确. 二、选择题 1-5:ACDCB; 6-8: CCB; 三、计算与应用题 1、(1)解:变量分离得, 1 1 2 2 -= +x xdx y ydy , 两边积分得, c x y ln 2 1)1ln(2 1)1ln(2 12 2 +-=+, 从而方程通解为 )1(122-=+x c y . (2)解:整理得, x y x y dx dy ln =,可见该方程是齐次方程, 令 u x y =,即xu y =,则dx du x u dx dy +=,代入方程得,u u dx du x u ln =+, 变量分离得, x dx u u du = -) 1(ln ,积分得,c x u ln ln )1ln(ln +=-, 所以原方程的通解为cx x y =-1ln ,或写为1 +=cx xe y . (3)解:整理得,x e y x y =+ '1,可见该方程是一阶线性方程,利用公式得通解为 )(1)(1)(1 1 c e xe x c dx xe x c dx e e e y x x x dx x x dx x +-= +=+??=??- . (4)解:整理得, x y x x dx dy 1ln 1= +,这是一阶线性方程,利用公式得通解为 )2 ln (ln 1)ln (ln 1)1(2 ln 1 ln 1 c x x c dx x x x c dx e x e y dx x x dx x x +=+=+??=??- , 代入初始条件1==e x y 得2 1= c ,从而所求特解为)ln 1(ln 2 1x x y + = . (5)解:将方程两边逐次积分得,12 arctan 11c x dx x y +=+= '? , 212 1)1ln(2 1arctan )(arctan c x c x x x dx c x y +++-=+= ? ,

电子科技大学微积分试题及答案

电子科技大学微积分试题及答案

电子科技大学期末微积分 一、选择题(每题2分) 1、设x ?()定义域为(1,2),则lg x ?()的定义域为() A 、(0,lg2) B 、(0,lg2] C 、(10,100) D 、(1,2) 2、x=-1是函数x ?()=() 22 1x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点 3、试求024 lim x x x →+等于() A 、-1 4 B 、0 C 、1 D 、∞ 4、若 1y x x y +=,求y '等于() A 、 22x y y x -- B 、22y x y x -- C 、22y x x y -- D 、22x y x y +- 5、曲线2 21x y x = -的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射() A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+ C 、2y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、2 1x +__________ 2、、2(1))lim ()1 x n x f x f x nx →∞-=+设 (,则 的间断点为__________ 3、21lim 51x x bx a x →++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________ 5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分)

高等数学 课后习题答案第七章

习题七 1. 在空间直角坐标系中,定出下列各点的位置: A (1,2,3); B (-2,3,4); C (2,-3,-4); D (3,4,0); E (0,4,3); F (3,0,0). 解:点A 在第Ⅰ卦限;点B 在第Ⅱ卦限;点C 在第Ⅷ卦限; 点D 在xOy 面上;点E 在yOz 面上;点F 在x 轴上. 2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢? 答: 在xOy 面上的点,z =0; 在yOz 面上的点,x =0; 在zOx 面上的点,y =0. 3. x 轴上的点的坐标有什么特点?y 轴上的点呢?z 轴上的点呢? 答:x 轴上的点,y =z =0; y 轴上的点,x =z =0; z 轴上的点,x =y =0. 4. 求下列各对点之间的距离: (1) (0,0,0),(2,3,4); (2) (0,0,0), (2,-3,-4); (3) (-2,3,-4),(1,0,3); (4) (4,-2,3), (-2,1,3). 解:(1 )s = (2) s == (3) s == (4) s ==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 02 s = x s == y s == 5z s ==. 6. 在z 轴上,求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解:设此点为M (0,0,z ),则 222222(4)1(7)35(2)z z -++-=++-- 解得 149z = 即所求点为M (0,0,14 9). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图 7-1 图7-1 9. 设2, 3.u v =-+=-+-a b c a b c 试用a , b , c 表示23.u v -

相关文档
相关文档 最新文档