文档库 最新最全的文档下载
当前位置:文档库 › 对函数极限相关性质的理解及应用1111

对函数极限相关性质的理解及应用1111

对函数极限相关性质的理解及应用1111
对函数极限相关性质的理解及应用1111

对函数极限相关性质的理解及应用

定西师范高等专科学校 数学系 数学教育专业 09级3班 程艳君

摘 要:函数极限的概念和存在条件是我们理解函数极限和判断函数极限是否存在的主要依据,函数的极限在数学分析中占有十分重要的地位,因此,较为复杂函数极限的计算也是我们学者应该掌握的。本文浅略地介绍了函数极限的概念和存在条件,函数极限的性质以及两个重要极限在计算比较复杂的函数极限中的应用。

关键词:函数极限;重要极限;四则运算;迫敛法。

引 言:

函数极限是数学分析的重要概念,它贯彻于整个数学分析中,函数极限理论是研究函数连续、导数、积分、级数等的基本工具,而一些较为复杂的函数极限计算又在解决实际问题中是必不可少的。本文最主要介绍函数极限的概念和函数极限存在的条件,还有两个重要函数极限、迫敛法和四则运算法在解较复杂函数极限中的应用。

1 . 函数的极限和极限存在的条件

1.1 函数的极限

1.1.1 x 趋于∞+时函数的极限

设函数f 定义在 ),[∞a 上,类似于数列的情形,我们研究当自变量x 趋于∞+时,对应的函数值能否无限的接近于某个正数A 。例如,对于函数x x f 1)(=,从图像上可见,当x 无限的增大时,函数值无限的接近于0;而对于函数

x crc x g tan )(=,则当x 趋于∞+时函数值无限的接近于2

π。我们称这两个函数当x 趋于∞+时有极限。一般地,当x 趋于∞+ 时函数的极限饿精确定义如下: 设f 为定义在),[∞a 上的函数,A 为定数。若对任给的0>ε,存在正数M(a ≥),使得当M x >时有ε<-a x f )(,则称函数f 当x 趋于∞+时以A 为极限,记作

A x f x =∞→)(lim 或

)()(∞→→x A x f

1.1.2 x 趋于0x 时函数的极限

设f 为定义在点0x 的某个空心领域)(00x U 内的函数。再讨论当x 趋于)(00x x x ≠时,对应的函数值能否趋于某个定数A 。这类函数极限的定义如下: 设函数f 在点0x 的某个空心领域);('00δx U 内有定义,A 为定数。若对任给的0>ε,存在正数)('δδ< 使的当时有ε<-a x f )(,则称函数f 当x 趋于0x 时以A 为极限,记作

A x f x x =→)(lim 0 或

)()(0x x A x f →→

这个定理也是(函数极限的δε-定义)

举例说明如何运用δε-定义来验证这种类型的函数极限,特别注意δ的值时怎么样确定的。 例:设24)(2--=x x x f ,证明4)(lim 2

=→x f x 证明:由于2≠x 时

24242

44)(2-=-+=---=-x x x x x f 故对给定的0>ε,只要取δε=,则当δ<-<20x 时有ε<-4)(x f 。这就证明了4)(lim 2

=→x f x

1.2函数极限存在的条件

函数极限存在的条件:(1)归结原理(Heine 定理)设函数f 在),(00ηx u 内有定义,)(lim x f o

x x →存在的充分必要条件是:对于在),(00ηx u 内以0x 为极限的任何数列

{n x },极限)(lim n n x f ∞

→都存在并且相等;(2)单调有界定理设f 为定义在)(00x u +

上的单调有界函数,则右极限)(lim 0

x f x x =→存在;(3)柯西(Cauchy)收敛准则设函数)(x f 在

);(00δx u 内有定义,),;(,,0,000"'δδεx u x x ∈??>?>?

ε<-)()("'x f x f 。

这三个条件是判断函数极限是否存在的最基本的方法,归结原理建立了函数极限与数列界限的关系,将函数极限的存在性转化为数列极限的存在性,其中归结原理和柯西准则通常用来证明函数极限的不存在性,在这里我们看一下归结原理有关的例题。 例:证明极限x

x 1sin

lim 0→不存在。 证明:设πn x n 1'=,() ,2,1221"=+=n n x n π

π,则显然有

)(0,0"'∞→→→n x x n n

, ).(111sin ,001sin "'∞→→=→=n x x n

n 故由归结原则即得结论。

2.两个常用的极限和在计算极限中的应用

2.1.两个重要极限的推广形式和衍生公式

第一个重要的极限1sin lim 0

=→x x x ,我们来看一下它的推广形式1)

()(sin lim 0)(=→x x x ???, 0)(→x ?表示在某极限过程中)(x ?的极限为零。 1sin lim 0=→x x x 的三种衍生公式:(1)[]1)()(sin lim 0)(=→x f x f x f ;(2)1tan lim 0

=→x x x (3)21cos 12

0lim =-→x x x 第二个重要的极限e x x x =??? ?

?+∞→11lim ,或者,我们也来看一下它的推广形式,当

∞=→)(lim 0x x x ?时,e x x x x =??

????+→)()(11lim 0?? e x x x =??? ?

?+∞→11lim 的三个衍生公式:(1)e x x x =+→10)1(lim ;(2)1)1ln(lim 0=+→x x x ;

(3)11lim 0

=-→x e x x e x x

x =??? ??+∞→11lim 有两个特征:(1)底数是1加上无穷小;(2)指数是底中无穷小的倒数。

2.2两个重要极限在计算极限中的应用

第一个重要极限实际上是两个无穷小之比的极限, 若分子分母分别求极限便得到这一不确定的结果.因此称这一类型的极限为(

0)型不定极限. 第二个极限属于(∞1)型不定型极限.

综上所述,可以得出这样的结论,凡是含有三角函数的(00 )型极限和(∞1)型极限,我们都可不妨分别应用两个重要极限来试试,看能否得出他的结果,以下举一些例子来说明是如何应用这两个重要极限于极限计算中的。

例1:求x

x x sin sin sin lim 0→ 解:这显然是含三角函数的(

00

)型极限.因为

x x x x x x x x s i n *s i n )s i n (*s i n s i n )s i n s i n (s i n s i n s i n s i n = 当0→x ,0sin sin →x 由第一个重要极限及其一般形式立刻得到:

)sin *sin sin sin *sin sin sin sin sin (sin sin sin lim lim 0x x x x x x x x o

x x →→==1*1*1=1 例2:计算x

x x x sin 3sin lim 0-→ 解:x

x x x sin 3sin lim 0-→ =x

x x x sin 2cos 2lim 0→ =x x x x x sin 2cos 2lim lim 0

0→→? =2

例3:计算x x x x ??

? ??--∞→32lim 解:x x x x ??

? ??--∞→32lim

=x x x ??? ?

?-+∞→311lim =33311lim +-∞→??? ?

?-+x x x =3

3311311lim lim ??? ??-+???? ??-+∞→-∞→x x x x x =1?e

=1

例4:计算()x

x x +→1ln lim 0 解:()x

x x +→1ln lim 0 =()x x

x +?→1ln 1lim 0

=()x

x x 11ln lim +∞→

=()x

x x 11ln lim +∞→

=e ln

=1

3函数极限的性质和在计算函数极限中的应用

3.1函数极限的六种性质及证明

3.1.1唯一性,若极限)(lim 0

x f x x →的极限存在,则极限是唯一的。

3.1.2局部有界性,若)(lim 0

x f x x →存在,则f 在0x 的某个空心领域)(00x U 内有界。

3.1.3局部保号型,若0)(lim 0

>=→A x f x x 或(<0),则对任何正数A r <(或A r -<),

存在)(00x U ,使得对一切)(00x U x ∈有0)(>>r x f (或0)(<-

3.1.4包不等号性,设)(lim 0x f x x →与A x g x x =→)(lim 0

,且在某);('00δx U 内有)

()(x g x f ≤则)()(lim lim 0

0x g x f x x x x →→≤。

3.1.5迫敛性,设A

x g x f x x x x ==→→)()(lim lim 00,且在某);('00δx U 内有

)()()(x g x h x f ≤≤,则A x h x x =→)(lim 0

3.1.6函数的四则运算法则

若A x f x x =→)(lim 0 B x g x x =→)(lim 0

(1)[]B A x g x f x g x f x x x x x x ±=±=±→→→)()()()(lim lim lim 0

00

(2)[])()()()(lim lim lim 0

00x g x f x g x f x x x x x x →→→?=?=B A ?

(3)若0≠B 则:

B A x g x f x g x f x x x x x x ==→→→)()()()(lim lim lim 0

(4)A c x f c x f c x x x x ?=?=?→→)()(lim lim 0

这些性质对于∞→x ,-∞→x ,+∞→x 时也同样成立。

3.2函数极限的性质在计算函数极限中的应用

3.2.1四则运算法则在计算极限中的应用

利用函数极限的四则运算法则,我们可从一些简单的函数极限出发,计算较复杂的函数极限。法则难理解我们要注意一下两点:1、函数的个数有限,且每个函数的极限要存在;2、作为除数的函数极限不为零。

例1:求45322

lim +++→x x x x 的极限 解:45322

lim +++→x x x x =4

252322++?+

=2

5 例2:求61032332

lim ----→x x x x x 解:61032332

lim ----→x x x x x =)

32)(2()542)(2(222lim ++-++-→x x x x x x x =32542222

lim ++++→x x x x x =3

2225242222+?++?+? =11

21 3.2.2迫敛性在计算函数极限中的应用

利用函数极限的迫敛性,我们可从一些简单的函数极限出发,计算较复杂的函数极限。我们下面看几个简单的例题,从中感受利用迫敛性和一些简单已知的函数极限去计算比较复杂的函数极限。

例1 :求??????→x x x 1lim 0

. 解:当0>x 时有 111≤??

????<-x x x 而1)1(lim 0=-+

→x x ,故有迫敛性得

11lim 0=??????+

→x x x 另一方面,当0

????≤111,故由迫敛性可得 11lim 0=??????+

→x x x 综上,我们求得11lim 0

=??????→x x x

例2:计算x

x x 3sin 2sin lim 0→ 解:x

x x 3sin 2sin lim 0→ =x x

x x

x x x 333sin 222sin lim 0??→ =32x

x

x x

x 33sin 22sin lim 0→ =x x x x

x x 33sin 22sin 32lim lim 0

0→→? =3

2 总 结:在本文介绍了函数极限的概念、存在性以及两个重要的极限、函数极限的性质,其中函数极限性质中的唯一性、局部有界性、局部保号型、保不等式性等我都没有详细的介绍,本文最重要的内容是利用两个重要的极限和函数极限性质中的迫敛性和四则运算法则去计算比较复杂的函数极限。

参考文献:

[1] 罗伟.探讨求函数极限的三种常用方法[J].数学学习与研究,2011(1).

[2] 扶炜.刘松.常见的函数极限求法分析[J].教育时空,2010(4).

[3] 王伟珠.常用求极限方法浅析[J].中国科教创新导刊, 2007(472) .

[4] 华东师范大学数学系 编.数学分析上册第三版.

对函数极限相关性质的理解及应用1111

对函数极限相关性质的理解及应用 定西师范高等专科学校 数学系 数学教育专业 09级3班 程艳君 摘 要:函数极限的概念和存在条件是我们理解函数极限和判断函数极限是否存在的主要依据,函数的极限在数学分析中占有十分重要的地位,因此,较为复杂函数极限的计算也是我们学者应该掌握的。本文浅略地介绍了函数极限的概念和存在条件,函数极限的性质以及两个重要极限在计算比较复杂的函数极限中的应用。 关键词:函数极限;重要极限;四则运算;迫敛法。 引 言: 函数极限是数学分析的重要概念,它贯彻于整个数学分析中,函数极限理论是研究函数连续、导数、积分、级数等的基本工具,而一些较为复杂的函数极限计算又在解决实际问题中是必不可少的。本文最主要介绍函数极限的概念和函数极限存在的条件,还有两个重要函数极限、迫敛法和四则运算法在解较复杂函数极限中的应用。 1 . 函数的极限和极限存在的条件 1.1 函数的极限 1.1.1 x 趋于∞+时函数的极限 设函数f 定义在 ),[∞a 上,类似于数列的情形,我们研究当自变量x 趋于∞+时,对应的函数值能否无限的接近于某个正数A 。例如,对于函数x x f 1)(=,从图像上可见,当x 无限的增大时,函数值无限的接近于0;而对于函数 x crc x g tan )(=,则当x 趋于∞+时函数值无限的接近于2 π。我们称这两个函数当x 趋于∞+时有极限。一般地,当x 趋于∞+ 时函数的极限饿精确定义如下: 设f 为定义在),[∞a 上的函数,A 为定数。若对任给的0>ε,存在正数M(a ≥),使得当M x >时有ε<-a x f )(,则称函数f 当x 趋于∞+时以A 为极限,记作

函数极限的定义的多种表达

函数极限的定义 林芳 20101101903 数学科学学院 2010级(1)班 指导教师 韩刚 摘要 极限是数分中的重要内容,用定义证明极限类型题都要用到它。本文就给出二十四个函数极限的定义。 关键词 极限 1函数在一点的极限的定义 1.1函数在0x 点的极限的定义 设函数f(x)在0x 点的附近(但可能除掉点本身)有定义,又设A 是一个定数。如果对任意给定的ε>0,一定存在δ>0,使得当0<0x x -<δ时,总有A x f -)(<ε,我们就称A 是函数在点0x 的极限,记为 A x f x x =→0 )(lim , 或者记为 f(x)→A(x 0x →). 这时也称函数f(x)在0x 点极限存在,其极限值是A. 1.2函数在点0x 右侧的极限的定义 设函数f(x)在(0x ,η+0x )内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0

我们就称A 是函数f(x)在点x 0的右极限,记为 0)(lim +→x x x f =A 或f(x 0+0)=A 或 f(x)→A (x 0x →+0) 这时也称函数f(x)在点0x 右极限存在。 1.3函数在0x 点左侧的极限的定义 设函数f(x)在(00,x x η-)内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0<δ<-x x 0时,有A x f -)(<ε,我们就称A 是函数f(x)在点的左极限,记为 0)(lim -→x x x f =A 或 f(00-x )=A 或 f(x))0(0-→→x x A 这时也称函数f(x)在0x 点左极限存在. 2函数在无限远处的极限 2.1函数在无限远处极限的定义 若对任意给定的ε>0,存在X>0,当X x >时,总有ε<-A x f )(,我们说A 是f(x)在无限远处的极限,或者说A 是当x 的极限时)(x f ∞→,记为 ) ()()()(lim ∞→→=∞=∞→x A x f A f A x f x 或 这时也称函数f(x)在无限远处极限存在 2.2函数在正无限远处的极限的定义

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

函数极限的综合分析与理解

函数极限的综合分析与理解 PB 王欣 极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。 一、函数极限的定义和基本性质 函数极限可以分成x →0x ,x →∞两类,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以0x x →的极限为例,()x f 在点0x 以A 极限的定义是:,0,0>?>?δε使当δ<-<00x x 时,有()().f x A A ε-<为常数问题的关键在于找到符合定义要求的δ,在这一过程中会用到一些不等式技巧,例如放缩法等。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若0 lim x x →存在,则在该点的极限是唯一的)可以体现在用海涅定理证明()x f 在0x 处的极限不存在。即如果()A x f n →,()B x f n →'(0',x x x n n n →∞→和), 则()x f 在0x 处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式()()() x Q x P x f =(()()x Q x P ,均为多项式,()0≠x Q )。设()x P 的次数为n ,()x Q 的次数为m , 当∞→x 时,若m n <,则()0→x f ;若m n =,则()→x f ()x P 与()x Q 的最高次项系数之比;若 m n >,则()∞→x f 。 000()()(()0)()P x f x Q x Q x →→≠0当x x 时,。 二、运用函数极限的判别定理 最常用的判别定理包括单调有界定理和夹挤定理,在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值,参见附例2。二是应用夹挤定理的关键是找到极限值相同的函数()x g 与()x h ,并且要满足()()()x h x f x g ≤≤,从而证明或求得函数()x f 的极限值。

函数极限的性质

第十三讲、函数极限的性质 定理13.1.(唯一性)若极限0lim ()x x f x →存在,则极限值唯一. 证明:我们使用反证法加以证明。假设0lim ()x x f x A →=及0lim ()x x f x B →=, A B <。 取()/2B A ε= ?,则存在δ>10,使得当010||x x δ20,使得当020||x x δ0,使得()f x 在邻域0(;)o U x δ内有界. 定理13.3. 若0lim ()x x f x A →=, 0 lim ()x x g x B →=且A B <,则存在δ>0使当0(;)o x U x δ∈时, 有 ()()f x g x <. 在上面的定理13.3中,取()0g x ≡,则有 推论13.1 .( 局部保号性). 若0 lim ()x x f x A →=且 A > 0 , ( A < 0 ) 则存在δ>0使当0(;)o x U x δ∈时, 有 ()0f x >(()0f x <). 推论13.2 .( 保不等式) 若存在δ>0使当0(;)o x U x δ∈时, 有 ()()f x g x ≤且0lim ()x x f x A →=, 0lim ()x x g x B →=,则A B ≤。

对函数极限概念的理解

对函数极限概念的理解 函数极限概念,不易理解。由于极限概念具有高度的抽象性,因此,令人很难快速正确理解和掌握极限数学语言的真正内涵,以致于学完了极限,极限的意识还很薄弱。因此,要抓住理解的关键,我们体会,宜抓住以下三点: (一)将“任意近处”的描绘性语言,转化为可进行量化比较的准确表达 考察数集X={x},若在点x0的任意近处包含有X中异于x0的x的值,则点x0称为这数集的聚点。 为着要更准确地表达这定义,我们引入点x0的邻域的概念:以点x0为中心的开区间(x0?δ,x0+δ)称为点x0的邻域。下边我们将聚点做可进行量化比较的准确表达:若在点x0的任一邻域内包含X中异于x0的x的值,则x0是数集X的聚点。关于“任一邻域”,δ=1cm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1mm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;δ=1nm算不算“任一邻域”?不算。只能说它是“任一邻域”之一部分而不是全部;……,点x0的邻域可以无穷小。因此,“任一邻域”是一个无穷集。 对聚点x0本身来说,可以属于X,或不属于X。也就是说x0在X上可以有定义或无定义。x0在X上无定义时,它的邻域也存在,叫做空心领域。 (二)注意函数f(x)在x接近于x0时的性态。 设在区域X内给定函数f(x),且x0是X的聚点。这函数f(x)在x接近于x0时的性态是值得注意的。相对于自变量x,通过法则f,得到f(x),若出现了f(x)无限趋近于数A的性态,或者叫做f(x)与数A的差距无限小的性态,则可类似于x0的邻域δ,把ε看作A的邻域, 而把这种性态更准确地表达为:Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)。这个表达就具备了可 进行量化比较性。 (三)δ与ε的关系 从x与f(x)的关系看,前者为因,后者为果。但是从x0的邻域δ与A的邻域ε的关系看,则是前者依赖后者,总是要先给定任一ε>0,而后求那个能保证ε成立的δ。即δ的几何空 间受ε的几何空间的约束。既然f(x)无限趋近于数A的性态,可更准确地表达为:Ⅰf(x)- A Ⅰ<ε(ε是任一大于零的数),那么,使Ⅰf(x)- AⅠ<ε(ε是任一大于零的数)成立的δ应是什么样呢?也就是如何依赖Ⅰf(x)- AⅠ<ε求δ呢?具体过程如下: 将Ⅰf(x)- AⅠ变形:Ⅰf(x)- AⅠ=MⅠx-x0Ⅰ,其中M是一个与x无关的常量。 再取δ=ε M ,则当0<Ⅰx-x0Ⅰ<δ时,有0<Ⅰx-x0Ⅰ<ε M ,整理为00能求出δ>0,只须Ⅰx-x 0Ⅰ<δ能使Ⅰf(x)- AⅠ<ε(式中的x取自X 内且异于x0)成立,则称当x趋向于x0时(或在x0)函数f(x)以数A为极限。 记成:lim x→ x0 f x=A

函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2,n x x n ≠= ,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A + -→→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ? φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ????? ? ? ? +? -?? () 2 11c o s ~2 (1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ? φ≤≤(,且 0 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

函数与极限重点知识归纳

常量与变量 变量的定义 我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。 变量的表示 如果变量的变化是连续的,则常用区间来表示其变化范围。 在数轴上来说,区间是指介于某两点之间的线段上点的全体。 以上我们所述的都是有限区间,除此之外,还有无限区间: [a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 邻域 设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 函数 函数的定义 如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。 注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的. 注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 函数的有界性 如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. 函数的单调性

数列与函数的极限公式概念

极限与连续 一、数列的极限定义: 1、给定数列{},如果当n 无限增大时,其通项无限趋过于某个常数A ,则称数列{}以A 为极限,记作: =A 或者 (n ) 2、当数列{}以实数A 为极限时,称数列{}收敛于A ,否则称数列{}发散。 二、数列极限的性质: 1)极限的惟一性:若数列收敛,则其极限惟一,若 =a ,则 =a 2)有界性:收敛数列必有界. (数列有界是数列收敛的必要非充分条件) 3)数列的极限:如数列:ΛΛ,1 2,,432,322,212++n n 则它的极限为3 即:3121 lim 2lim )12(lim =+=++=++∞→∞→∞→n n n n n n n 三、几个需要记忆的常用数列的极限 01lim =∞→n n 11lim =+∞→n n n 0lim =∞→n n q )1(

?极限运算法则: 设limf(x)=A,limg(x)=B,则 1)lim[f(x)]=A B 2)lim[f(x)g(x)]=AB 3)当B时,lim= 4)lim[cf(x)]=climf(x) (c为常数) 5)lim[f(x)= [limf(x)(k为常数) ?小结 ..:.当,时,有= ?复合函数运算法则:= ?数列的夹逼准则:设有3个数列{}{}{},满足条件: 1)(n=1,2,…); 2)==a,则数列{}收敛,且=a ?函数夹逼准则:设函数f(x),g(x),h(x)在点的某去心邻域内有定义,且满足条件: 1)g(x)f(x)h(x); 2)=A,. 则极限存在且等于A. ?单调有界准则:单调有界数列必有极限.即单调增加有上界的数列必有极限;即单调减少有下界的数列必有极限. ?两个重要的极限: ?重要极限Ⅰ:=1

极限的性质与四则运算法则

第四节 极限的性质与四则运算法则 教学目的:使学生掌握极限的四则运算法则,并会利用它们求极限; 教学重点:有理函数极限的计算; 教学过程: 一、复习无穷大和无穷小的概念及性质 二、讲解新课: 一、函数极限的性质 定理1:(保号性)设A x f x x =→)(lim 0 , (i ) 若)0(0<>A A ,则0>?δ,当),(0δ∧ ∈x U x 时,0)(>x f )0)((A 的情形。取2 A =ε,由定义,对此0,>?δε,当),(0δ∧∈x U x 时, 2)(A A x f =<-ε,即0)(2 32)(220>?=+<<-=”,“<”不能改为“≥”,“≤”。 在(ii)中,若0)(>x f ,未必有0>A 。 二、极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

最新1.4极限的性质与四则运算法则

1.4极限的性质与四 则运算法则

第四节极限的性质与四则运算法则 教学目的:使学生掌握极限的四则运算法则,并会利用它们求极限; 教学重点:有理函数极限的计算; 教学过程: 一、复习无穷大和无穷小的概念及性质 二、讲解新课: 一、函数极限的性质 定理1:(保号性)设?Skip Record If...?, (i)若?Skip Record If...?,则?Skip Record If...?,当?Skip Record If...?时,?Skip Record If...??Skip Record If...?。 (ii)若?Skip Record If...?,必有?Skip Record If...?。 证明:(i)先证?Skip Record If...?的情形。取?Skip Record If...?,由定 义,对此?Skip Record If...?,当?Skip Record If...?时,?Skip Record If...?,即?Skip Record If...?。 当?Skip Record If...?时,取?Skip Record If...?,同理得证。 (ii)(反证法)若?Skip Record If...?,由(i)?Skip Record If...?矛盾,所以?Skip Record If...?。 当?Skip Record If...?时,类似可证。 注:(i)中的“?Skip Record If...?”,“?Skip Record If...?”不能改为“?Skip Record If...?”,“?Skip Record If...?”。 在(ii)中,若?Skip Record If...?,未必有?Skip Record If...?。 二、极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。定理1:若?Skip Record If...?,则?Skip Record If...?存在,且?Skip Record If...?。

极限的基本性质

极限的基本性质 数列极限的性质 1、 极限的不等式性: 设;A x n n =∞→lim B y n n =∞ →lim ; ①若A>B, 则存在於同一趋势过程中,即?N ,当n>N 时 存在:> n x n y ②若>,则存在於同一趋势过程中,A≥B. n x n y ③若< ,在存在於同一趋势过程中,A≤B. n x n y 2、 极限的唯一性: 若;A x n n =∞→lim B x n n =∞ →lim 则在n 的同一趋势过程中,A=B 3、 收敛数列必有界性: 若在n 取定趋势下收敛,则 必然有界,即: n x n x

函数极限的性质 1、 函数极限的不等式性: 若;A x f n x x =→)(lim B x g n x x =→)(lim ; ①若A>B {在x→的趋势运动中,即: 0x ?δ>0 ,在δg(x) ②若f(x)>g(x), {δ

设, A x f n x x =→)(lim ①若f(x)≥0, 则在δ0, 则在δ0 3、 函数极限的唯一性: 设;A x f n x x =→)(lim B x f n x x =→)(lim 则在δ

§3.2 函数极限的性质

§2 函数极限的性质 【教学目的】掌握函数极限的基本性质――唯一性、局部有界性、局部保号性、保不等式性、 迫敛性以及四则运算性等,并能应用相关性质解决函数的极限问题。 【教学重点】函数极限的性质及其计算。 【教学难点】函数极限性质证明及其应用。 在§1中我们引入了下述六种类型的函数极限: 1) +∞→x lim f ( x ) 2) -∞→x lim f ( x ) 3) ∞ →x lim f ( x ) 4) )(lim 0x f x x → 5) )(lim 0x f x x +→ 6))(lim 0 x f x x -→ 它们具有与数列极限相类似的一些性质,下面以第4)种类型的极限为代表来叙述并证明这些性质.至于其他类型极限的性质及其证明, 只要相应地作些修改即可. 定理3.2(唯一性) 若极限)(lim 0 x f x x →存在,则此极限是唯一的. 证 设 A 、B 都是f 当x →x 0时的极限,则对任给的ε>0分别存在正数δ1与δ2使得当0 < 0x x - < δ1时有 A x f -)( < ε (1) 当 0 < 0x x - < δ2 时有 B x f -)( < ε (2) 取δ=min(δ1;δ2) ,则当 0 < 0x x - < δ时, (1)与(2)式同时成立, 故有 B A - = B x f A x f ---)())((≤B x f A x f -+-)())(( < 2ε 由ε的任意性得A=B .这就证明了极限是唯一的. 定理3.3 (局部有界性) 若)(lim 0 x f x x → 存在, 则f 在x 0的某空心邻域 ∪0(x 0) 内有界 证 设 )(lim 0 x f x x →= A 取ε=1,则存在δ> 0 使得对一切x ∈∪0(x 0; δ)有 1)(1)(+ 0 (或< 0), 则对任何正数r < A (或r <-A),存在∪0(x 0) 使得对一切x ∈∪0 (x 0) 有 f(x) > r > 0 (或f(x) < -r < 0) 证 设 A >0,对任何r ∈(0,A)取 ε=A - r ,则存在δ> 0使得对一切x ∈∪0(x 0; δ)有 f (x) > A -ε = r 这就证明得结论.对于A < 0的情形可类似地证明

函数极限的定义与基本性质

函数极限的定义与基本性质 本章主要阐述函数的定义与基本性质,其中,最为重要的函数的极限的模型来自于对自由落体运动,由平均速度, h gt h t g 2 221)(21-+(1) 求解瞬时速度,也就是说要考察上述函数(1)中h (注意,t 是固定的),当h 无限变小时,它的变化趋势,也就是看它是否无限接近于一个数。 首先看到,这个函数在0=h 是没有定义的,但至少在包含0的一个开区间(0点除外)有定义,h 不等于0的时候,有 gh gt h gt h t g 2 121)(2122+=-+ 当{}h 很小的时候,左边的函数值与右边的函数值的差也很小,而且当h 无限接近于0的时候,左边的函数值也无限接近于gt 。 接下来,把“接近”、“无限”等语言精确化,便得到我们所要的函数极限概念的定义: 1.1定义: 设)(x f 在0x 点附近(除0x 点以外)有定义,A 是一定数,若对任意给定的0>ε,存在0>δ,当δ<-<00x x 的时候,有 ε<-A x f )(, 则称A 是函数)(x f 当x 趋于0x 的时候的极限,记为 A x f x x =→)(lim 0 或者记为: A x f →)( (0x x →)

1.2 定理: 若 B x g x x A x f x x =→=→)(lim ,)(lim 00,则 (1) B A x g x f x x ±=±→))()((lim 0 (2) B A x g x f x x ?=?→))()((lim 0 (3)B A x g x f x x =→)()(lim 0 1.3 推论: 若 A x f x x =→)(lim 0,c 为常数,则 []cA x cf x x =→)(lim 0 1.4 局部有界性定理: 若 A x f x x =→)(lim 0 ,则存在0>δ,使得)(x f 在 ),(),(0000δδ+?-x x x x 上有界。 1.5 局部保号性定理: A x f x x =→)(lim 0 >0, 则存在0>δ,当δ<-<00x x 的时候, 有: 02)(>> A x f 1.6定理: 若 0)(lim 0=→x f x x ,且存在0>δ,)(x g 在),(),(0000δδ+?-x x x x 上有界,则 0)()(lim 0 =→x g x f x x

数列极限的运算性质

极限的运算 教学目标 1熟练运用极限的四则运算法则,求数列的极限. 2 ?理解和掌握三个常用极限及其使用条件?培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力. 3?正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想. 教学重点与难点使用极限四则运算法则及3个常用极限时的条件. 教学过程 (一)运用极限的四则运算法则求数列的极限 师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个 例1 :求下列极限: 3^2 7n 3n (1) lim n 师:(1)中的式子如何转化才能求出极限. 生:可以分子、分母同除以n3,就能够求出极限. 7- 0+ 0^- 0 7 师:(2)中含有幕型数,应该怎样转化? 生;可以转化咸11啤JO的形式.分子、分母同时除臥" 心0 师:分子、分母同时除以3n-1结果如何? 生:结果应该一样. 常用极限: 1 lim — =0,lim C=C , lim q n=0 (|q|<1 )来解决。 n 4n3 1 ,315 7 ----- 1 -------- p— 解‘原式牡叮山 lim 7 —lim —I- lim -□- + lim ~? lim4 - IL-KX* nf gfi 解:原式=lim肮— CO孑Z怕I?丿 Mi) 1 z 0-1 3 -lim I l旳

生;不能-因为limq" = 0中! 时,一般方法是把分子、分母同除以n的最高次為转化威求数列£} 的极限问题. % rr^w 师;第〔1)题有的同学结果得A有的得刍写岀耒大家分析、 判断正误. 0^~ 3 1-0 1 师:分子、分母同时除以2n或2n-1,能否求出极限? |q|1 (二)先求和再求极限 例2求下列极限: 由学生自己先做,教师巡视.

极限的概念_函数的连续性详解

第二章.极限概念 函数的连续性 对于函数的概念,我们总是能够从日常直观出发,就能很好地加以理解,因为毕竟因果关系的观念在我们的意识当中是非常深根蒂固的。那么要真正严格地理解极限的观念,就不是那么自然的了。 对于极限的观念,最为关键的问题是,如何定量地加以描述,并把这种描述作为一般的判别标准。 这个问题实际上困扰了人们几百年,一直到19世纪才加以解决的。 数列的极限描述(数列存在极限判别定理,定义法、柯西法、子数列法、夹逼法、单调有界法) 设存在一个数列,也就是一个数值的集合,这个集合的元素可以一个一个的数出来,同时每一个元素都可以加上唯一的标志,而自然数是最为适宜作这件工作的。比如说,把一个数列写成这样的样子:,....,,321a a a ,或者简单地记成{}a n 。 观察这个数列取值变化, 有的数列变化具有下面的变化规律: 对于数列,....,,321a a a ,假设存在一个确定的常数a ,现在我们考虑变量a a n -(显然这是一个反映数列数值变化的,随着n 而发生变化的变量。),如果我们任意找到一个数ε,无论它的数值有多么大或者多么小,我们总是能够在这个数列当中找到一个元素a N ,使得在这个a N 元素后面的所有的数列元素,都使得相应的变量a a n -的值小于ε, 换一句话来说,对于任意的ε,总是存在一个N ,当n>N 时, 总是有ε <-a a n 成立 这时我们就把a 称为数列,...,,321a a a 的极限。并且称数列 ,....,,321a a a 收敛于极限a 。我们使用记号a a n n =∞→lim 来表示该数列极限。 否则我们就说数列{}a n 是发散的。

数列极限的运算性质

极限的运算 教学目标 1.熟练运用极限的四则运算法则,求数列的极限. 2.理解和掌握三个常用极限及其使用条件.培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想. 教学重点与难点 使用极限四则运算法则及3个常用极限时的条件. 教学过程 (一)运用极限的四则运算法则求数列的极限 师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个 常用极限:n n 1 lim ∞→=0,∞→n lim C=C ,∞ →n lim q n =0(|q|<1)来解决。 例1:求下列极限: 1 45 37lim )1(323-++-∞→n n n n n 师:(1)中的式子如何转化才能求出极限. 生:可以分子、分母同除以n 3,就能够求出极限.

师:(2)中含有幂型数,应该怎样转化? 师:分子、分母同时除以3n-1结果如何? 生:结果应该一样. 师:分子、分母同时除以2n或2n-1,能否求出极限?

(二)先求和再求极限 例2求下列极限: 由学生自己先做,教师巡视. 判断正误. 生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况.此题当n →∞,和式成了无限项的和,不能使用运算法则,所以解法1是错的. 师:解法2先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限.第(2)题应该怎样做?

生:用等比数列的求和公式先求出分母的和. =12. 师:例2告诉我们不能把处理有限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别注意极限四则运算法则的适用条件. 例3求下列极限: 师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策. 生:(1)题是连乘积的形式,可以进行约分变形. 生:(2)题是分数和的形式,可以用“裂项法”变形.

极限的性质和运算法则

第 周第 学时教案 授课教师:贾其鑫 1.4 极限的性质与运算法则 教学目标: 1.掌握极限的性质及四则运算法则。 2.会应用极限的性质及运算法则求解极限 教学重点:极限的性质及四则运算法则; 教学难点:几种极限的种类及求解方法的归纳 教学课时:2学时 教学方法:讲授法、归纳法、练习法 教学过程: 1.4.1 极限的性质 性质1.5(唯一性) 若极限)(lim x f 存在,则极限值唯一. 性质1.6(有界性) 若极限)(lim 0 x f x x →存在,则函数)(x f 在0x 的某个空心邻域内有界. 性质1.7(保号性) 若A x f x x =→)(lim 0 ,且0>A (或0x f (或0)(

第 周第 学时教案 授课教师:贾其鑫 (3)当0)(lim ≠=B x v 时,B A x v x u x v x u ==)(lim )(lim )()(lim 证 我们只证(1). 因为A x u =)(lim ,B x v =)(lim ,由定理1.2有α+=A x u )(,β+=B x v )(,其中α,β是同一极限过程的无穷小量,于是)()()()(βα+±+=±B A x v x u )()(βα±+±=B A .根据无穷小量的性质,βα±仍是无穷小量,再由定理1.2的充分性可 得.[]B A x v x u x v x u ±=±=±)(lim )(lim )()(lim . 上述运算法则,不难推广到有限多个函数的代数和及乘法的情况. 推论 设)(lim x u 存在,c 为常数,n 为正整数,则有 (1) [])(lim )(lim x u c x u c ?=?; (2) []n n x u x u )]([lim )(lim =. 在使用这些法则时,必须注意两点: (1)法则要求每个参与运算的函数的极限存在. (2)商的极限的运算法则有个重要前提,即分母的极限不能为零. 例1 求)522(lim 1 +--→x x x . (初等函数定义域内某点的极限) 解 )522(lim 1 +--→x x x 5lim 1 )2(lim 1)2(lim 1-→+-→--→=x x x x x 5lim 1 )2(lim 1)2(lim 1-→+-→--→=x x x x x

函数极限的综合分析与理解解读

函数极限的综合分析与理解 经济学院 财政学 任银涛 0511666 数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际分析、弹性分析等方法。函数极限是高等数学中的一个重要问题。极限可以与很多的数学问题相联系。例如,导数从根本上是求极限;函数连续首先要求函数在某一点的左极限等于右极限。有鉴于函数极限的重要性,结合自己的学习心得,笔者写下了此文。其目的在于归纳和总结解决函数极限问题的实用方法和技巧,以期对函数极限问题的学习有所帮助。局限于笔者的认知水平,缺点和不足在所难免,欢迎批评指正。 一、函数极限的定义和基本性质 函数极限可以分成x →0x ,x →∞两类,而运用ε-δ定义更多的见诸于已知 极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以0x x →的极限为例,()x f 在点0x 以A 极限的定义是:,0,0>?>?δε使当δ<-<00x x 时,有()().f x A A ε-<为常数问题的关键在于找到符合定义要求的δ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。 函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若0 lim x x →存在,则在该点的极限是唯一的)可以体现在用海涅定理证明()x f 在0x 处的极限不存在。即如果()A x f n →,() B x f n →'(0',x x x n n n →∞→和),则()x f 在0x 处的极限不存在。 运用函数极限的性质可以方便地求出一些简单函数的极限值。例如对于有理分式()()() x Q x P x f =(()()x Q x P ,均为多项式,()0≠x Q )。设()x P 的次数为n ,()x Q 的次数为m , 当∞→x 时,若m n <,则()0→x f ;若m n =,则()→x f ()x P 与()x Q 的最高次项系数之比;若m n >,则()∞→x f 。000()()(()0)() P x f x Q x Q x →→≠0当x x 时,。

相关文档
相关文档 最新文档