文档库 最新最全的文档下载
当前位置:文档库 › 北师大版数学高二柯西不等式教案 选修4-5

北师大版数学高二柯西不等式教案 选修4-5

北师大版数学高二柯西不等式教案  选修4-5
北师大版数学高二柯西不等式教案  选修4-5

高中数学 柯西不等式教案 选修4-5

教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式.

教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义.

教学过程:

一、复习准备:

1. 提问: 二元均值不等式有哪几种形式?

答案:(0,0)2

a b

a b +>>及几种变式.

2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥

二、讲授新课:

1. 教学柯西不等式:

① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法?

证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++

222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则

22()()()f x ax c bx d =-+-≥0恒成立.

∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? 222||c d ac bd +≥+ 或222||||c d ac bd +≥+

2

22c d ac bd +≥+.

④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 )

→ 讨论:上面时候等号成立?(β是零向量,或者,αβ共线)

⑤ 练习:已知a 、b 、c 、d ≥. 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式:

① 出示定理3:设1122,,,x y x y R ∈≥分析其几何意义 → 如何利用柯西不等式证明

→ 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点)

三、巩固练习:

1. 练习:试写出三维形式的柯西不等式和三角不等式

2. 作业:教材P 37 4、5题.

第二课时 3.1 二维形式的柯西不等式(二)

教学要求:会利用二维柯西不等式及三角不等式解决问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的关系,经过适当变形,依据经典不等式得到不等关系. 教学重点:利用二维柯西不等式解决问题. 教学难点:如何变形,套用已知不等式的形式.

教学过程:

一、复习准备:

1. 提问:二维形式的柯西不等式、三角不等式? 几何意义?

答案:22222()()()a b c d ac bd ++≥+2. 讨论:如何将二维形式的柯西不等式、三角不等式,拓广到三维、四维?

3. 如何利用二维柯西不等式求函数y 的最大值?

要点:利用变式22||ac bd c d ++.

二、讲授新课:

1. 教学最大(小)值:

① 出示例1:求函数y =的最大值? 分析:如何变形? → 构造柯西不等式的形式 → 板演

→ 变式:y =

广

,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值.

解答要点:(凑配法)2222222111

()(32)(32)131313

x y x y x y +=

++≥+=. 讨论:其它方法 (数形结合法) 2. 教学不等式的证明:

① 出示例2:若,x y R +∈,2x y +=,求证:11

2x y

+≥.

分析:如何变形后利用柯西不等式? (注意对比 → 构造)

要点:2222

111111()()]

22x y x y x y +=++=++≥… 讨论:其它证法(利用基本不等式)

② 练习:已知a 、b R +∈,求证:11

()()4a b a b

++≥.

3. 练习:

① 已知,,,x y a b R +∈,且1a b

x y

+=,则x y +的最小值.

要点:()()a b

x y x y x y

+=++=…. → 其它证法

② 若,,x y z R +∈,且1x y z ++=,求222x y z ++的最小值. (要点:利用三维柯西不等式)

变式:若,,x y z R +∈,且1x y z ++=

.

3. 小结:比较柯西不等式的形式,将目标式进行变形,注意凑配、构造等技巧.

三、巩固练习:

1. 练习:教材P 37 8、9题

2. 作业:教材P 37 1、6、7题

第三课时 3.2 一般形式的柯西不等式

教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题.

教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想.

教学过程:

一、复习准备: 1. 练习:

2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?

答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++

二、讲授新课:

1. 教学一般形式的柯西不等式:

① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式?

② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b ++

+++≥+++

讨论:什么时候取等号?(当且仅当1212n n

a a a

b b b ===时取等号,假设0i b ≠)

联想:设1122n n B a b a b a b =+++,22212n A a a a =++

,22212n C b b b =+++,则有

20B AC -≥,可联想到一些什么?

③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类)

要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+(

)(222

12()n b b b +++???+ ,则 2221122()()())0n n f x a x b a x b a x b =++++???+≥+(.

又222120n a a a ++???+>,从而结合二次函数的图像可知,

[]2

2221122122()4()n n n a b a b a b a a a ?=+++-++

22212()n b b b +++≤0

即有要证明的结论成立. (注意:分析什么时候等号成立.)

④ 变式:222212121

()n n a a a a a a n

++≥++???+. (讨论如何证明)

2. 教学柯西不等式的应用:

① 出示例1:已知321x y z ++=,求222x y z ++的最小值. 分析:如何变形后构造柯西不等式? → 板演 → 变式:

② 练习:若,,x y z R +∈,且

1111x y z ++=,求23

y z

x ++的最小值. ③ 出示例2:若a >b >c ,求证:c

a c

b b a -≥-+-4

11. 要点:21111

()(

)[()()]()(11)4a c a b b c a b b c a b b c

-+=-+-+≥+=---- 3. 小结:柯西不等式的一般形式及应用;等号成立的条件;根据结构特点构造证明.

三、巩固练习:

1. 练习:教材P 41 4题

2. 作业:教材P 41 5、6题

第四课时 3.3 排序不等式

教学要求:了解排序不等式的基本形式,会运用排序不等式分析解决一些简单问题,体会运用经典不等式的一般方法.

教学重点:应用排序不等式证明不等式. 教学难点:排序不等式的证明思路.

教学过程:

一、复习准备:

1. 提问: 前面所学习的一些经典不等式? (柯西不等式、三角不等式)

2. 举例:说说两类经典不等式的应用实例. 二、讲授新课:

1. 教学排序不等式: ① 看书:P 42~P 44.

② 提出排序不等式(即排序原理):

设有两个有序实数组:12a a ≤≤···n a ≤;12b b ≤≤···n b ≤.12,,c c ···n c 是12,b b ,···,n b 的任一排列,则有

1122a b a b ++···+n n a b (同序和)

1122a c a c ≥++···+n n a c (乱序和) 121n n a b a b -≥++···+1n a b (反序和)

当且仅当12a a ==···=n a 或12b b ==···=n b 时,反序和等于同序和.

(要点:理解其思想,记住其形式) 2. 教学排序不等式的应用:

① 出示例1:设12,,,n a a a ???是n 个互不相同的正整数,求证:

321222

111

12323n a a a a n n +++???+≤+++???+

. 分析:如何构造有序排列? 如何运用套用排序不等式? 证明过程:

设12,,,n b b b ???是12,,,n a a a ???的一个排列,且12n b b b <

又222111

123n

>>>???>,由排序不等式,得

33

2211222222

2323n n a a b b a b a b n n +

++???+≥+++???+≥… 小结:分析目标,构造有序排列. ② 练习:

已知,,a b c 为正数,求证:3332222()()()()a b c a b c b a c c a b ++≥+++++.

解答要点:由对称性,假设a b c ≤≤,则222a b c ≤≤,

于是 222222a a b b c c a c b a c b ++≥++,222222a a b b c c a b b c c a ++≥++, 两式相加即得.

3. 小结:排序不等式的基本形式.

三、巩固练习:

1. 练习:教材P 45 1题

2. 作业:教材P 45 3、4题

2014年人教A版选修4-5教案 二 一般形式的柯西不等式

二 一般形式的柯西不等式 教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题. 教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程: 一、复习准备: 1. 练习: 2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维? 答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++ 二、讲授新课: 1. 教学一般形式的柯西不等式: ① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式? ② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,, ,,,,,n n a a a b b b R ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b +++++≥+++ 讨论:什么时候取等号?(当且仅当 12 12 n n a a a b b b === 时取等号,假设0i b ≠) 联想:设1122n n B a b a b a b =+++, 22212n A a a a =++,22212n C b b b =+++,则有20B AC -≥, 可联想到一些什么? ③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类) 要点:令2222121122)2()n n n f x a a a x a b a b a b x =++???++++???+( )(222 12()n b b b +++???+ ,则 2221122()()())0n n f x a x b a x b a x b =++++???+≥+(. 又222120n a a a ++???+>,从而结合二次函数的图像可知, []2 2221122122()4()n n n a b a b a b a a a ?=+++-++ 22212()n b b b +++≤0 即有要证明的结论成立. (注意:分析什么时候等号成立.) ④ 变式:222212121 ()n n a a a a a a n ++ ≥++???+. (讨论如何证明)

一般形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【一般形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α ,β 为平面上的两个向量,则αβαβ? ≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 问题2:你会用柯西不等式证明下面的两个不等式吗? (1)222a b ab +≥ (2)2221()2 a b a b ++≥ 解析: (1)2222222222))()(2),)(2)a b a b ab ab ab a b ab +++=+∵((≥∴(≥

如何进行柯西不等式的教学(含答案)

如何进行柯西不等式的教学 柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用,教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用. 在介绍了二维形式的柯西不等式的基础上,教科书引导学生在平面直角坐标系中,根据两点间的距离公式以及三角形的边长关系,从几何意义上发现二维形式的三角不等式接着借助二维形式的柯西不等式证明了三角不等式,在一般形式的柯西不等式的基础上,教科书安排了—个探究栏目,让学生通过探究得出一般形式的三角不等式. 由上可见,教材编写者对这部分内容的要求以便让学生在大学学习打下坚实的基础,但这部分教与学的难度是显而易见的. 柯西不等式∑∑∑===≥n i i i n i i n i i b a b a 1 21 2 1 2 )(是柯西在1931年研究数学分析中的“留数” 问题时得到的.表面上看,这一不等式并不难理解,也很容易验证它的正确性,特别是它的二阶形式22222)())((bd ac d c b a +≥++,几乎是不证自明的.但是,我们能看出这一平凡无奇的不等式成立,是因为事先已经知道两边是什么式子,而最先发现这样的不等关系,则是一个创造的过程,并不是那么容易的.柯西不等式不失为至善至美的重要不等式,以它的对称和谐的结构,简洁明快的解题方法等特点,深受人们的喜爱.而且和物理学中的矢量、高等数学中的内积空间等内在地联系在一起.柯西不等式的几种形式都有较为深刻的背景和广泛的应用,向量形式αβαβ≥?不仅直观地反映了这一不等式的本质,一般形式

柯西不等式教学设计

3.1 二维形式的柯西不等式(一)教学设计 一、设计思想: 本节乃至本讲的编写意图不是仅仅介绍经典不等式及其证明方法,而是更希 望能通过分析和解决问题,讨论经典不等式的简单应用,提高学生运用重要数学 结论进行推理论证的能力,即在理解重要数学结论的基础上,能够发现面临的具 体问题与重要数学结论之间的内在联系,并善于利用这样的联系,应用重要数学 结论及其所反映的数学思想方法解决具体问题。 二、教材分析: 二维形式的柯西不等式是人教A 版教材选修4-5第三讲第一节的内容,是学生 继学习均值不等式之后学习的又一个经典不等式,它在教材中起着承前启后的作 用,一方面巩固了前面证明不等式及求最值的基本方法,另一方面与后面学习的 三维形式的柯西不等式及一般形式的柯西不等式有着相通的研究方法,是从特殊 到一般的研究过程。本节教学的核心是二维形式的柯西不等式、几何意义以及它 的简单应用。 三、学情分析: 学生不仅掌握了不等式的基本证明方法,还具备了一定的观察、分析、逻辑推 理能力,学生对柯西不等式的向量形式也有了一定的认识,这是学生知识的“最 近发展区”。另外授课班级是高二年级(4)班,学生基础较好,学习积极性较高。 四、教学目标 1、知识与技能目标 (1)认识二维柯西不等式的几种不同形式,理解其几何意义。 (2)能用二维柯西不等式解决简单的证明问题及求最值问题。 2、过程与方法目标 通过创设情境提出问题,然后探索解决问题的方法,培养学生 独立思考能力和逻辑推理能力及数形结合能力。 3、情感态度与价值观 简单介绍法国数学家柯西,渗透数学史和数学文化。 五、教学重难点 (1)教学重点 二维形式的柯西不等式 ; 二维形式的柯西不等式的向量形式 (2)教学难点 数形结合的认识两种形式的等价关系;应用柯西不等式求最值 六、教学过程 (一)定理探究 设α ,β 为平面上以原点O 为起点的两个非零向量,它们的坐标α =(b a ,) β =(d c ,)那么它们的数量积为ac bd αβ→→?=+而22||a b α→=+,22||c d β=+ ||||cos αβαβθ?=?? ,cos 1θ≤ ||||||αβαβ∴ ?≤? ,其中等号当且仅当两个向量共线时成立。 定理:(二维柯西不等式的向量形式)设α ,β 为平面上的两个向量,则 ||||||αβαβ?≤? ,当且仅当β 是零向量或存在实数k ,使k αβ= 时等号成立。 用向量坐标表示不等式||||||αβαβ?≤? ,得2222||d c b a bd ac +?+≤+

《二 一般形式的柯西不等式》教案

《二 一般形式的柯西不等式》教案 教学目标 1.认识柯西不等式的几种不同形式,理解其几何意义; 2.通过运用这种不等式分析解决一些问题,体会运用经典不等式的一般方法 教学重、难点 重点:一般形式柯西不等式的证明思路,运用这个不等式证明不等式. 难点:应用一般形式柯西不等式证明不等式. 教学过程 一、复习引入: 定理1:(柯西不等式的代数形式)设d c b a ,,,均为实数,则 22222)())((bd ac d c b a +≥++,其中等号当且仅当bc ad =时成立. 定理2:(柯西不等式的向量形式)设α,β为平面上的两个向量,则||||||βαβα?≥?,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+- 二、讲授新课: 类似的,从空间向量的几何背景业能得到?αβαβ≤将空间向量的坐标代入,可得到 2222222123123112233()()()a a a b b b a b a b a b ++++≥++ 当且仅当,αβ共线时,即0,β=或存在一个数k ,使得(1,2,3)i i a kb i ==时,等号成立. 这就是三维形式的柯西不等式. 对比二维形式和三维形式的柯西不等式,你能猜想出一般形式的柯西不等式吗? 定理(一般形式的柯西不等式):设n 为大于1的自然数,i i b a ,(=i 1,2,…,n )为任 意实数,则:22222212121122()()()n n n n a a a b b b a b a b a b ++++≥++L L L 即 2 11212)(∑∑∑===≥n i i i n i i n i i b a b a ,其中等号当且仅当1212n n b b b k a a a ====L 时成立(当0=i a 时,约定0=i b ,=i 1,2,…,n ). 证明:构造二次函数:2222211)()()()(n n b x a b x a b x a x f -++-+-=Λ

北师大版数学高二柯西不等式教案 选修4-5

高中数学 柯西不等式教案 选修4-5 教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式. 教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义. 教学过程: 一、复习准备: 1. 提问: 二元均值不等式有哪几种形式? 答案:(0,0)2 a b a b +>>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 二、讲授新课: 1. 教学柯西不等式: ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a b =+,2||n c d =+∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? 222||c d ac bd +≥+ 或222||||c d ac bd +≥+ 2 22c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d ≥. 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈≥分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 三、巩固练习:

一般形式的柯西不等式精品教案

一般形式的柯西不等式 【教学目标】 认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式。 【教学重点】 会证明二维柯西不等式及三角不等式。 【教学难点】 理解几何意义。 【教学过程】 一、复习准备: 1.提问: 二元均值不等式有哪几种形式? 答案:及几种变式。 (0,0)2a b a b +≥>>2.练习:已知A .B .C .d 为实数,求证 22222()()()a b c d ac bd ++≥+ 证法:(比较法)=…= 22222()()()a b c d ac bd ++-+2()0ad bc -≥二、讲授新课: 1. 柯西不等式: ① 提出定理1:若A .B .C .d 为实数,则。 22222()()()a b c d ac bd ++≥+ → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法) 222222222222()()a b c d a c a d b c b d ++=+++ 。 (要点:展开→配方) 222()()()ac bd ad bc ac bd =++-≥+ 证法三:(向量法)设向量,,则,(,)m a b =u r (,)n c d =r ||m =u r ||n =r ∵ ,且,则。 ∴ …。。 m n ac bd ?=+u r r ||||cos ,m n m n m n ?=<>u r r u r r u r r ||||||m n m n ?≤u r r u r r 证法四:(函数法)设,则 22222()()2()f x a b x ac bd x c d =+-+++≥0恒成立。 22()()()f x ax c bx d =-+-

教案对“柯西不等式”展开的联想

1 对“柯西不等式”展开的联想 我追求的教学境界: 与其说数学教师教学生学习数学,不如说数学教师引领学生一同走进数学殿堂来欣赏数学更为合适。 我展示的主题用义: 其用义在于呼唤更多的教师与学生走出题海,回归课本。 1.思想方法研究 例3:已知bc ad ≠,求证:2 2222)())((bd ac d c b a +>++; 体现的载体简单,饱含的方法经典,反映的思想深刻。 2.数学背景联想 例4:已知R b a ∈,,求证:222)()(2b a b a +≥+; 华罗庚:“数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉, 形少数时难入微。” 3.文化渊源概述 柯西是法国数学家.1789年8月21日生于巴黎;1857年5月23日卒于巴黎附近的索镇. 柯西的父亲是一位精通古典文学的律师,曾任法国参议院秘书长,和拉格朗日、拉普拉斯等人交往甚密,因此柯西从小就认识了一些著名的科学家. 柯西自幼聪敏好学,在中学时就是学校里的明星,曾获得希腊文、拉 丁文作文和拉丁文诗奖.在中学毕业时赢得全国大奖赛和一项古典文学特别奖.拉格郎日曾预言他日后必成大器.1805年他年仅16岁就以第二名的成绩考入巴黎综合工科学校,1807年又以第一名的成绩考入道路桥梁工程学校.1810年3月柯西完成了学业离开了巴黎,从1810年12月,柯西就把数学的各个分支从头到尾再温习一遍,从算术开始到天文学为止,把模糊的地方弄清楚,应用他自己的方法去简化证明和发现新定理,柯西于1813年回到巴黎综合工科学校任教,1816年晋升为该校教授.以后又担任了巴黎理学院及法兰西学院教授. 数学中以他的姓名命名的有:柯西积分、柯西公式、柯西不等式、柯西定 理、柯西函数、柯西矩阵、柯西分布、柯西变换、柯西准则、柯西算子、柯西序列、柯西系统、柯西主值、柯西条件、柯西形式、柯西问题、柯西数据、柯西积、柯西核、柯西网……等等。

高中数学人教A版选修4-5教学案第三讲 一 二维形式的柯西不等式

一二维形式的柯西不等式 对应学生用书 .二维形式的柯西不等式()定理:若,,,都是实数,则(+)(+) ≥ (+) ,当且仅当=时,等号成立. ()二维形式的柯西不等式的推论: (+)(+)≥(+)(,,,为非负实数); ≥ + · (,,, ); ∈ ≥ · + ∈ ). (,,, .柯西不等式的向量形式 α·β ≤ α β· 是两个向量,则 α , β 定理:设 零向量 ,当且仅当 β 时 α = β 是 ,或存在实数,使 ,等号成立.[注意]柯西不等式的向量形式中α·β≤αβ,取等号“=”的条件是β=或存在实数,使α=β. .二维形式的三角不等式 ()定理:+≥(,,,∈). 当且仅当三点,与共线,并且,点在原点异侧时,等号成立. ()推论:对于任意的,,,,,∈,有 + ≥. 事实上,在平面直角坐标系中,设点,,的坐标分别为(,),(,),(,),根据△的边长关系有+≥,当且仅当三点,,共线,并且点,在点的异侧时,等号成立. 对应学生用书 [例]已知θ为锐角,,∈ ,求证:+≥(+). +

[思路点拨]可结合柯西不等式,将左侧构造成乘积形式,利用“=θ+θ.”然后用柯西不等式证明. [证明]∵+ =(θ+θ) ≥θ)· θ+( θ)· θ)) =(+), ∴(+)≤+. 利用柯西不等式证明不等式的关键在于利用已知条件和所证不等式,把已知条件利用 添项、拆项、分解、组合、配方、变量代换等,将条件构造柯西不等式的基本形式,从而 利用柯西不等式证明,但应注意等号成立的条件. .已知+=,+=,求证:+≤. 证明:由柯西不等式得 (+)≤(+)(+)=, ∴+≤. .已知,,,为正实数. 求证:(+)≥(+). 证明:(+)=[()+()]≥ =(+). .设,,为正数, 求证:++≥(++). 证明:由柯西不等式: ·≥+, 即·≥+. 同理:·≥+, ·≥+, 将上面三个同向不等式相加得: (+)+(+)))≥(++) ∴++≥·(++).

高中数学第三讲柯西不等式与排序不等式3.3排序不等式教案新人教A版选修4_5

3.3排序不等式 一、教学目标 1.了解排序不等式的数学思想和背景. 2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题. 二、课时安排 1课时 三、教学重点 1.了解排序不等式的数学思想和背景. 2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题. 四、教学难点 1.了解排序不等式的数学思想和背景. 2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题. 五、教学过程 (一)导入新课 某班学生要开联欢会,需要买价格不同的礼品4件,5件和2件.现在选择商店中单价分别为3元,2元和1元的礼品,则至少要花________元,最多要花________元.【解析】取两组实数(2,4,5)和(1,2,3),则顺序和为2×1+4×2+5×3=25,反序和为2×3+4×2+5×1=19. 所以最少花费为19元,最多花费为25元. 【答案】19 25 (二)讲授新课 教材整理1 顺序和、乱序和、反序和的概念 设a1≤a2≤a3≤…≤a n,b1≤b2≤b3≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则称a i与b i(i=1,2,…,n)的相同顺序相乘所得积的和为顺序和,和为乱序和,相反顺序相乘所得积的和称为反序和. 教材整理2 排序不等式 设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则≤≤,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和,此不等式简记为≤≤顺序和. (三)重难点精讲

题型一、用排序不等式证明不等式(字母大小已定) 例1已知a ,b ,c 为正数,a ≥b ≥c ,求证: (1)1bc ≥1ca ≥1ab ; (2)a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥1a 2+1b 2+1c 2. 【精彩点拨】 由于题目条件中已明确a ≥b ≥c ,故可以直接构造两个数组. 【自主解答】 (1)∵a ≥b >0,于是1a ≤1 b . 又c >0,∴1c >0,从而1bc ≥1 ca , 同理,∵b ≥c >0,于是1b ≤1 c , ∴a >0,∴1a >0,于是得1ca ≥1 ab , 从而1bc ≥1ca ≥1ab . (2)由(1)知1bc ≥1ca ≥1 ab >0且a ≥b ≥c >0, ∴ 1 b 2c 2 ≥ 1 c 2a 2 ≥ 1 a 2b 2 ,a 2 ≥b 2≥c 2 . 由排序不等式,顺序和≥乱序和得 a 2 b 2 c 2+b 2c 2a 2+c 2a 2b 2≥b 2b 2c 2+c 2c 2a 2+a 2a 2b 2=1c 2+1a 2+1b 2=1a 2+1b 2+1c 2, 故a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥1a 2+1b 2+1c 2. 规律总结:利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组. [再练一题] 1.本例题中条件不变,求证:a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥c 2a 3+a 2b 3+b 2 c 3. 【证明】 ∵a ≥b ≥c ≥0, ∴a 5 ≥b 5 ≥c 5 , 1 c ≥1b ≥1 a >0. ∴1bc ≥1ac ≥1ba ,

3.2一般形式的柯西不等式 教案(优秀经典公开课比赛教案)

澜沧拉祜族自治县第一中学教案 课题:3.2一般形式的柯西不等式 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣、刘世杰、刘德清 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础。本节课的核心内容是柯西不等式一般形式的推导及其简单应用。 二、教学目标: 1、知识与技能:.认识柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:通过柯西不等式与其它基本不等式的关系,感悟柯西不等式的美; 3、情感、态度与价值观:在运用柯西不等式分析、解决问题的过程中,体会柯西不等式的应用方法. 三、教学重点:柯西不等式的一般形式、变形以及它与一些基本不等式的关系,柯西不等式的使用方法. 四、教学难点:在具体问题中怎样使用柯西不等式. 五、教学准备 1、课时安排:1课时 2、学情分析:学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 实物展台 六、教学方法:启发引导、讲练结合法 七、教学过程 1、自主导学:一、创设问题情境,检查课后学习情况: 问题1:你知道二维形式的柯西不等式吗?有几种形式? 定理1:(二维柯西不等式)设d c b a ,,,均为实数,则22222)())((bd ac d c b a +≥++, 等号当且仅当bc ad =时成立. 定理2:(向量形式)设α,β为平面上的两个向量,则αβαβ?≥,其中等号当且仅 当两个向量方向相同或相反(即两个向量共线)时成立. 定理3:(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+-

高中数学-公式-柯西不等式

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则22||m a b =+,2||n c d =+. ∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d ≥. 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+ 3. 如何利用二维柯西不等式求函数y =? 要点:利用变式2 22||ac bd c d ++. 二、讲授新课: 1. 教学最大(小)值: ① 出示例1:求函数y = 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式:y = → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点:2222111111()()] 22x y x y x y +=++=++≥…

2021-2022年高中数学3.2一般形式的柯西不等式教学案(无答案)新人教版选修4-5

2021年高中数学3.2一般形式的柯西不等式教学案(无答案)新人教版选 修4-5 教学目标: 1.认识柯西不等式的几种不同形式,理解其几何意义; 2.通过运用这种不等式分析解决一些问题,体会运用经典不等式的一般方法 教学重点:一般形式柯西不等式的证明思路,运用这个不等式证明不等式。 教学难点:应用一般形式柯西不等式证明不等式。 教学过程: 一、复习引入: 定理1:(二维柯西不等式的代数形式)设均为实数,则 22222)())((bd ac d c b a +≥++,其中等号当且仅当时成立。 变式1、 变式2、 定理2:(柯西不等式的向量形式)设,为平面上的两个向量,则,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。 定理3:(三角形不等式)设为任意实数,则: 231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+-

二、讲授新课: 类似的,从空间向量的几何背景业能得到|α.β|≤|α|| β| .将空间向量的坐标代入,可得到 成立. 1,2,3)时,等号(b 使得a ,或存在一个实数k, 即共线时, , 当且仅当)b a b a b (a )b b )(b a a (a 23322112 32221232221===++≥++++i i i k 这就是三维形式的柯西不等式. 对比二维形式和三维形式的柯西不等式,你能猜想出一般形式的柯西不等式吗? 定理4:(一般形式的柯西不等式): 三、应用举例: 例1、 已知a 1,a 2,…,a n 都是实数,求证:22221221)(1 n n a a a a a a n +++≤+++

2018年选修4-5 《一般形式的柯西不等式》参考教案2

3.2 一般形式的柯西不等式 教学目的(要求):使学生认识二维柯西不等式及其证明; 培养学生用维柯西不等式的技能,从而发展学生的思维能力。 教学重点(难点):维柯西不等式的应用。 教学过程: 一、 温故 1、定理1:(二维形式的柯西不等式)若,,,,a b c d R ∈则 ()()()2 2 222a b c d ac bd ++≥+,当且仅当bc ad =时取等号 2、变式:若,,,,a b c d R ∈ac bd ≥+ ac bd + 显然当22221,1a b c d +=+=时,1ac bd +≤ 3、定理2:(柯西不等式的向量形式)设,αβ 是两个向量,则αβαβ?≤ 当且仅当,αβ 中有一个是零向量或存在实数k 使得k αβ= 时,等号成立。 4、定理3、(二维形式的三角形不等式)设123123,,,,,x x x y y y R ∈,那么 ≥ ≥ 5、配凑的思想 二、 新课:推广柯西不等式 1、由柯西不等式的向量形式:设,αβ 是两个向量,则αβαβ?≤ 这里,αβ 是平面向量,若,αβ 为空间向量呢, 构造向量()()123123,,,,,,a a a b b b αβ== 设,αβ 间的夹角为θ, 则仍有cos αβαβθαβαβ?=??≤ 即112233a b a b a b ++≤ 所以()()()2 222222133123112233a a a b b b a b a b a b ++++≥++

当且仅当()1,2,3i i a kb i ==时取等号 2、归纳推理:n 维上的柯西不等式: ()()()2 22222213121122n n n n a a a b b b a b a b a b ++++++≥++ 证明:回顾前面的证法 视22222213121122,,n n n n A a a a C b b b B a b a b a b =+++=+++=++ 则不等式为2B AC ≤ 构造二次函数22y Ax Bx C =++ 即()()222212n f x a a a x =+++- ()x b a b a b a n n +++ 22112+()22212n b b b +++ 当120n a a a ==== 或120n b b b ==== 时不等式显然成立 当12,,,n a a a 至少有一个不等于0时,222120n a a a +++> 而()()()()2 2 2 11220n n f x a x b a x b a x b =-+-++-≥ 恒成立。 所以其=?4()2 2211n n b a b a b a +++ -4()( )2 2 22 12 2 22 1n n b b b a a a ++++++ 0≤ 得:( )( )2 22212 2221n n b b b a a a ++++++ ()222 1 1n n b a b a b a +++≥ 当且仅当()f x 有唯一零点时,0?=以上不等式取等号。 此时有唯一的实数x 使得()01,2,,i i a x b i n +== 若0x =,则()01,2,,i b i n == ,不等式成立 若0x ≠,则()1 1,2,,i i i a b kb i n x =-== 综上当且仅当()01,2,,i b i n == 或()1,2,,i i a kb i n == 时不等式取等号。 推测正确 3、定理:一般形式的柯西不等式: 设1212,,;,,,n n a a a b b b R ∈ 则()()()2 22222213121122n n n n a a a b b b a b a b a b ++++++≥++ 即2 22 111n n n k k k k k k k a b a b -==??≥ ??? ∑∑∑

一、二维形式的柯西不等式(优秀经典公开课教案及练习解答)

二维形式的柯西不等式 学习目标:1。认识柯西不等式的几种不同形式,理解其几何意义; 2. 通过运用这种不等式分析解决一些问题,体会运用经典不等式的一般方法 重点难点:柯西不等式的证明思路,运用这个不等式证明不等式。 教学过程: 一、引入: 除了前面已经介绍的贝努利不等式外,本节还将讨论柯西不等式、排序不等式、平均不等式等著名不等式。这些不等式不仅形式优美、应用广泛,而且也是进一步学习数学的重要工具。 1、什么是柯西不等式: 定理1:(柯西不等式的代数形式)设d c b a ,,,均为实数,则 22222)())((bd ac d c b a +≥++, 其中等号当且仅当bc ad =时成立。 证明:略。 推论: 1. ||2222bd ac d c b a +≥+?+(当且仅当ad=bc 时,等号成立.) 2.),,,.()())((2+∈+≥++R d c b a bd ac d b c a (当且仅当ad=bc 时,等号成立.) 3.||||2222bd ac d c b a +≥+?+(当且仅当|ad|=|bc|时,等号成立) 例1:已知a,b 为实数,求证2 332244)())((b a b a b a +≥++ 说明:在证明不等式时,联系经典不等式,既可以启发证明思路,又可以简化运算。所以,经典不等式是数学研究的有力工具。 例题2:求函数x x y 21015-+-=的最大值。 分析:利用不等式解决最值问题,通常设法在不等式的一边得到一个常数,并寻找不等式取等号的条件。这个函数的解析式是两部分的和,若能化为ac+bd 的形式就能用柯西不等式求其最大值。(2222||d c b a bd ac +?+≤+) 解:函数的定义域为【1,5】,且y>0 3 6427)5()1()2(552152222=?=-+-?+≤-?+-?=x x x x y 当且仅当x x -?=-?5512时,等号成立,即27 127=x 时,函数取最大值36 课堂练习:1. 证明: (x 2+y 4)(a 4+b 2)≥(a 2x+by 2)2

高中数学:柯西不等式教案资料

类型一:利用柯西不等式求最值 例1.求函数的最大值 解:∵且,函数的定义域为,且, 即时函数取最大值,最大值为 法二:∵且,∴函数的定义域为 由,得 即,解得∴时函数取最大值,最大值为. 当函数解析式中含有根号时常利用柯西不等式求解 【变式1】设且,求的最大值及最小值。 利用柯西不等式得,故最大值为10,最小值为-10 【变式2】已知,,求的最值. 法一:由柯西不等式 于是的最大值为,最小值为. 法二:由柯西不等式 于是的最大值为,最小值为. 【变式3】设2x+3y+5z=29,求函数的最大值. 根据柯西不等式

, 故 。 当且仅当2x+1=3y+4=5z+6,即时等号成立,此时, 变式4:设a (1,0, 2),b (x , y ,z),若x 2 y 2 z 2 16,则a b 的最大值为 。 【解】∵ a (1,0, 2),b (x ,y ,z) ∴ a .b x 2z 由柯西不等式[12 0 ( 2)2](x 2 y 2 z 2) (x 0 2z)2 5 16 (x 2z)2 45 x 45 45 a .b 45,故a .b 的最大值为45: 变式5:设x ,y ,z R ,若x 2 y 2 z 2 4,则x 2y 2z 之最小值为 时,(x ,y ,z) 解(x 2y 2z)2 (x 2 y 2 z 2)[12 ( 2) 2 22] 4.9 36 ∴ x 2y 2z 最小值为 6,公式法求 (x ,y ,z) 此时 322)2(26221222 z y x ∴ 32 x ,34 y ,3 4 z 变式6:设x, y, z R ,若332 z y x ,则2 2 2 )1(z y x 之最小值为________,又 此时 y ________。 解析:14 36 ])1([)332(]1)3(2][)1([2 2 2 2 2 2 2 2 2 2 z y x z y x z y x ∴最小值 7 18 1, 233,2(2)3(31)3231x y z t x y z t t t Q ∴7 3 t ∴72 y 变式7:设a ,b ,c 均为正数且a b c 9,则c b a 16 94 之最小值为 解: 2)432( c c b b a a ( c b a 1694 )(a b c) (c b a 1694 ).9 (2 3 4)2 81 c b a 1694 9 81 9

二维形式的柯西不等式 教案

澜沧拉祜族自治县第一中学教案 【二维形式的柯西不等式】 学科:数学 年级:高三 班级:202、203 主备教师:沈良宏 参与教师:郭晓芳、龙新荣、刘世杰 审定教师:刘德清 一、教材分析:柯西不等式是人教A 版选修 4-5不等式选讲中的内容,是学生继均值不等式后学习的又一个经典不等式,它在教材中起着承前启后的作用。一方面可以巩固不等式的基本证明方法,和函数最值的求法,另一方面为后面学习三角不等式与排序不等式奠定基础,本节课的核心内容是柯西不等式二维形式的推导及其简单应用。 二、教学目标: 1、知识与技能:通过对二维形式的柯西不等式的探究和证明过程的分析的学习,认识二维形式的柯西不等式的几种不同形式,理解其几何意义; 2、过程与方法:过对柯西不等式几种不同形式的探究过程的学习,会用语言叙述柯西不等式的几种形式,能总结本节课涉及到的数形结合思想,比较法,综合法,配方法,类比法,构造法等数学方法,总结应用柯西不等式解答问题的一般方法与步骤; 3、情感、态度与价值观:通过对二维形式柯西不等式的学习,学生会感受到柯西不等式的对称与和谐美,感受探究交流与合作的学习方式,同时提高学习数学的兴趣,提高数学素养. 三、教学重点:二维形式柯西不等式的证明思路,二维形式柯西不等式的应用. 四、教学难点:二维形式柯西不等式的应用. 五、教学准备 1、课时安排:1课时 2、学情分析: 学生不仅已经掌握了不等式证明的基本方法,还具备了一定的观察、分析、逻辑推理的能力。通过对两种方法的证明,让学生体会对柯西不等式的向量形式和代数法证明的不同之处. 3、教具选择:多媒体 六、教学方法:启发引导、合作探究 七、教学过程 一. 1、自主导学:引入: 同学们,中学课本有很多定理定义都以科学家姓名命名,你知道有哪些? 牛顿,高斯,安培,焦耳,裴波拉契,欧姆,伽利略,韦达定理,笛卡尔, 祖暅原理,秦九韶算法,海伦公式,引出课题: 1.复习: 二元基本不等式 : (0,0)2a b ab a b +≥>>,当且仅当b a =时等号成立. 变形:ab b a 222≥+,R b a ∈,,当且仅当b a =时等号成立. 2. 尝试练习,引入新课: (1),122=+b a ,422=+d c 求bd ac +的最大值;学生独立思考,再小组讨论 分析:由, 122=+b a 422=+d c 得 ++22b a 2)2()2(22=+d c ,因为ac c a ≥+22)2 (,bd d b ≥+22)2(

高中数学教案:一 二维形式的柯西不等式

一 二维形式的柯西不等式(1) 教学要求:认识二维柯西不等式的几种形式,理解它们的几何意义, 并会证明二维柯西不等式及向量形式. 教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义. 教学过程: 一、复习准备: 1. 提问: 二元均值不等式有哪几种形式? 答案:(0,0)2 a b a b +>>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ 证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 二、讲授新课: 1. 教学柯西不等式: ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则2||m a =2||n c d =+∵ m n ac bd ?=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式? 222||c d ac bd +≥+ 或 222||||c d ac bd +≥+ 222c d ac bd +≥+. ④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(β是零向量,或者,αβ共线) ⑤ 练习:已知a 、b 、c 、d

相关文档
相关文档 最新文档