文档库 最新最全的文档下载
当前位置:文档库 › Linux客户端服务器通信(2)

Linux客户端服务器通信(2)

Linux客户端服务器通信(2)
Linux客户端服务器通信(2)

本文介绍了在Linux环境下的socket编程常用函数用法及socket编程的一般规则和客户/

服务器模型的编程应注意的事项和常遇问题的解决方法,并举了具体代码实例。要理解

本文所谈的技术问题需要读者具有一定C语言的编程经验和TCP/IP方面的基本知识。要

实习本文的示例,需要 Linux下的gcc编译平台支持。

Socket定义

网络的Socket数据传输是一种特殊的I/O, Socket也是一种文件描述符。Socket

也具有一个类似于打开文件的函数调用—Socket(),该函数返回一个整型的Socket描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。常用的Socket类型有两种:流式Socket—SOCK_STREAM和数据报式 Socket—SOCK_DGRAM。流式是一种面向连接的Socket,针对于面向连接的TCP服务应用;数据报式Socket是一种无连接的Socket,对应于无连接的UDP服务应用。

Socket编程相关数据类型定义

计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。Intenet上数据以高位字节优先顺序在网络上传输,所以对于在内部是以低位字节优先方式存储数据的机器,在Internet上传输数据时就需要进行转换。

我们要讨论的第一个结构类型是:struct sockaddr,该类型是用来保存socket信息的:

struct sockaddr {

unsigned short sa_family; /* 地址族, AF_xxx */

char sa_data[14]; /* 14 字节的协议地址 */ };

sa_family一般为AF_INET;sa_data则包含该socket的IP地址和端口号。

另外还有一种结构类型:

struct sockaddr_in {

short int sin_family; /* 地址族 */

unsigned short int sin_port; /* 端口号 */

struct in_addr sin_addr; /* IP地址 */

unsigned char sin_zero[8]; /* 填充0 以保持与struct sockaddr同样大

小 */

};

这个结构使用更为方便。sin_zero(它用来将sockaddr_in结构填充到与

struct sockaddr同样的长度)应该用bzero ()或memset()函数将其置为零。指向

sockaddr_in 的指针和指向sockaddr的指针可以相互转换,这意味着如果一个函数所需参数类型是sockaddr时,你可以在函数调用的时候将一个指向sockaddr_in的指针转换为

指向sockaddr的指针;或者相反。 sin_family通常被赋AF_INET;in_port和sin_addr应该转换成为网络字节优先顺序;而sin_addr则不需要转换。

我们下面讨论几个字节顺序转换函数:

htons()--"Host to Network Short" ; htonl()--"Host to Network long"

ntohs()--"Network to Host Short" ; ntohl()--"Network to Host Long"

在这里, h表示"host" ,n表示"network",s 表示"short",l表示 "long"

打开socket 描述符、建立绑定并建立连接

socket函数原型为:

int socket(int domain, int type, int protocol);

domain 参数指定socket的类型:SOCK_STREAM 或SOCK_DGRAM;protocol通常赋值“0”。Socket()调用返回一个整型 socket描述符,你可以在后面的调用使用它。一旦通过socket调用返回一个socket描述符,你应该将该socket与你本机上的一个端口相关联(往往当你在设计服务器端程序时需要调用该函数。随后你就可以在该端口监听服务请求;而客户端一般无须调用该函数)。 Bind函数原型为:

int bind(int sockfd,struct sockaddr *my_addr, int addrlen);

Sockfd是一个socket描述符,my_addr是一个指向包含有本机IP地址及端口号等信息的sockaddr类型的指针;addrlen常被设置为sizeof(struct sockaddr)。

最后,对于bind 函数要说明的一点是,你可以用下面的赋值实现自动获得本机IP地址

和随机获取一个没有被占用的端口号:

my_addr.sin_port = 0; /* 系统随机选择一个未被使用的端口号 */

my_addr.sin_addr.s_addr = INADDR_ANY; /* 填入本机IP地址 */

通过将my_addr.sin_port置为0,函数会自动为你选择一个未占用的端口来使用。同样,通过将 my_addr.sin_addr.s_addr置为INADDR_ANY,系统会自动填入本机IP地址。

Bind()函数在成功被调用时返回0;遇到错误时返回“-1”并将errno置为相应的错误号。另外要注意的是,当调用函数时,一般不要将端口号置为小于1024的值,因为1~1024是保留端口号,你可以使用大于1024中任何一个没有被占用的端口号。

Connect()函数用来与远端服务器建立一个TCP连接,其函数原型为:

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

Sockfd 是目的服务器的sockt描述符;serv_addr是包含目的机IP地址和端口号的指针。遇到错误时返回-1,并且errno中包含相应的错误码。进行客户端程序设计无须调用

bind(),因为这种情况下只需知道目的机器的IP地址,而客户通过哪个端口与服务器建立

连接并不需要关心,内核会自动选择一个未被占用的端口供客户端来使用。

Listen()——监听是否有服务请求

在服务器端程序中,当socket与某一端口捆绑以后,就需要监听该端口,以便对到达的服务请求加以处理。

int listen(int sockfd, int backlog);

Sockfd是Socket系统调用返回的socket 描述符;backlog指定在请求队列中允许的最

大请求数,进入的连接请求将在队列中等待accept()它们(参考下文)。cklog对队列中等待服务的请求的数目进行了限制,大多数系统缺省值为20。

当listen遇到错误时返回-1,errno被置为相应的错误码。

故服务器端程序通常按下列顺序进行函数调用:

socket(); bind(); listen(); /* accept() goes here */

accept()——连接端口的服务请求。

当某个客户端试图与服务器监听的端口连接时,该连接请求将排队等待服务器accept()它。通过调用accept()函数为其建立一个连接, accept()函数将返回一个新的socket描述符,来供这个新连接来使用。而服务器可以继续在以前的那个socket上监听,同时可以在新的 socket描述符上进行数据send()(发送)和recv()(接收)操作:

int accept(int sockfd, void *addr, int *addrlen);

sockfd是被监听的socket描述符,addr通常是一个指向sockaddr_in变量的指针,该变量用来存放提出连接请求服务的主机的信息(某台主机从某个端口发出该请求);addrten通常为一个指向值为sizeof(struct sockaddr_in)的整型指针变量。错误发生时返回一个-1并且设置相应的errno值。

Send()和recv()——数据传输

这两个函数是用于面向连接的socket上进行数据传输。

Send()函数原型为:

int send(int sockfd, const void *msg, int len, int flags);

Sockfd是你想用来传输数据的socket描述符,msg是一个指向要发送数据的指针。

Len是以字节为单位的数据的长度。flags一般情况下置为0(关于该参数的用法可参照man手册)。

char *msg = "Beej was here!"; int len, bytes_sent; ... ...

len = strlen(msg); bytes_sent = send(sockfd, msg,len,0); ... ...

Send()函数返回实际上发送出的字节数,可能会少于你希望发送的数据。所以需要对send()的返回值进行测量。当send()返回值与len不匹配时,应该对这种情况进行处理。

recv()函数原型为:

int recv(int sockfd,void *buf,int len,unsigned int flags);

Sockfd是接受数据的socket描述符;buf 是存放接收数据的缓冲区;len是缓冲的长度。Flags也被置为0。Recv()返回实际上接收的字节数,或当出现错误时,返回-1并置相应的errno值。

Sendto()和recvfrom()——利用数据报方式进行数据传输

在无连接的数据报socket方式下,由于本地socket并没有与远端机器建立连接,所以在发送数据时应指明目的地址,sendto()函数原型为:

int sendto(int sockfd, const void *msg,int len,unsigned int flags, const struct sockaddr *to, int tolen);

该函数比send()函数多了两个参数,to表示目地机的IP地址和端口号信息,而tolen 常常被赋值为sizeof (struct sockaddr)。Sendto 函数也返回实际发送的数据字节长度或在出现发送错误时返回-1。

Recvfrom()函数原型为:

int recvfrom(int sockfd,void *buf,int len,unsigned int lags,struct sockaddr *from,int *fromle n);

from是一个struct sockaddr类型的变量,该变量保存源机的IP地址及端口号。fromlen常置为sizeof (struct sockaddr)。当recvfrom()返回时,fromlen包含实际存入

from中的数据字节数。Recvfrom()函数返回接收到的字节数或当出现错误时返回-1,并置相应的errno。

应注意的一点是,当你对于数据报socket调用了connect()函数时,你也可以利用send()和recv()进行数据传输,但该socket仍然是数据报socket,并且利用传输层的UDP 服务。但在发送或接收数据报时,内核会自动为之加上目地和源地址信息。

Close()和shutdown()——结束数据传输

当所有的数据操作结束以后,你可以调用close()函数来释放该socket,从而

停止在该socket上的任何数据操作:close(sockfd);

你也可以调用shutdown()函数来关闭该socket。该函数允许你只停止在某个方向上的数据传输,而一个方向上的数据传输继续进行。如你可以关闭某socket的写操作而允许继续在该socket上接受数据,直至读入所有数据。

int shutdown(int sockfd,int how);

Sockfd的含义是显而易见的,而参数 how可以设为下列值:

·0-------不允许继续接收数据

·1-------不允许继续发送数据

·2-------不允许继续发送和接收数据,均为允许则调用close ()

shutdown在操作成功时返回0,在出现错误时返回-1(并置相应errno)。

DNS——域名服务相关函数

由于IP地址难以记忆和读写,所以为了读写记忆方便,人们常常用域名来表示主机,这就需要进行域名和IP地址的转换。函数gethostbyname()就是完成这种转换的,函数原型为:

struct hostent *gethostbyname(const char *name);

函数返回一种名为hosten的结构类型,它的定义如下:

struct hostent {

char *h_name; /* 主机的官方域名 */

char **h_aliases; /* 一个以NULL结尾的主机别名数组 */

int h_addrtype; /* 返回的地址类型,在Internet环境下为AF-INET */

int h_length; /*地址的字节长度 */

char **h_addr_list; /* 一个以0结尾的数组,包含该主机的所有地址*/

};

#define h_addr h_addr_list[0] /*在h-addr-list中的第一个地址*/

当 gethostname()调用成功时,返回指向struct hosten的指针,当调用失败时返回-1。当调用gethostbyname时,你不能使用perror()函数来输出错误信息,而应该使用herror()函数来输出。

面向连接的客户/服务器代码实例

服务器端程序

/******* 服务器程序 (server.c) ************/

/******************************************************************************************** ** Name:server.c

** Used to study the network programming in Linux OS.

** Showing how to use the functions,

** like socket,bind,listen,accept and write.

** This is the server program.

** Author:zeickey

** Date:2006/9/16

** Copyright (c) 2006,All Rights Reserved!

*********************************************************************************************/ #include

#include

#include

#include

#include

#include

#include

#include

int main(int argc, char *argv[])

{

int sockfd,new_fd;

struct sockaddr_in server_addr;

struct sockaddr_in client_addr;

int sin_size,portnumber;

char hello[]="Hello! Are You Fine?/n";

if(argc!=2)

{

fprintf(stderr,"Usage:%s portnumber/a/n",argv[0]);

return 1;

}

if( (portnumber = atoi(argv[1])) < 0 )

{

fprintf(stderr,"Usage:%s portnumber/a/n",argv[0]);

return 1;

}

/* 服务器端开始建立socket描述符 */

if( (sockfd = socket(AF_INET,SOCK_STREAM, 0)) == -1 )

{

fprintf(stderr,"Socket error:%s/n/a",strerror(errno));

return 1;

}

/* 服务器端填充 sockaddr结构 */

//bzero(&server_addr, sizeof(struct sockaddr_in));

memset(&server_addr, 0, sizeof(struct sockaddr_in));

server_addr.sin_family = AF_INET;

server_addr.sin_addr.s_addr = htonl(INADDR_ANY);

server_addr.sin_port = htons(portnumber);

/* 捆绑sockfd描述符,为下面的listen函数作准备 */

if( bind(sockfd,(struct sockaddr *)(&server_addr),sizeof(struct sockaddr))==-1 )

{

fprintf(stderr,"Bind error:%s/n/a",strerror(errno));

return 1;

}

/* 监听sockfd描述符 */

if( -1 == listen(sockfd,5) )

{

fprintf(stderr,"Listen error:%s/n/a",strerror(errno));

return 1;

}

while(1)

{

/* 服务器阻塞,直到客户程序建立连接 */

sin_size=sizeof(struct sockaddr_in);

//if( (new_fd = accept(sockfd, (struct sockaddr *)(&client_addr), &sin_size)) == -1) new_fd = accept(sockfd, (struct sockaddr *)(&client_addr), &sin_size);

if( -1 == new_fd )

{

fprintf(stderr,"Accept error:%s/n/a",strerror(errno));

return 1;

}

fprintf(stderr,"Server get connection from %s/n", inet_ntoa(client_addr.sin_addr)); if(write(new_fd,hello,strlen(hello))==-1)

{

fprintf(stderr,"Write Error:%s/n",strerror(errno));

return 1;

}

/* 这个通讯已经结束 */

close(new_fd);

/* 循环下一个 */

}

close(sockfd);

return 0;

}

客户端程序

/******* 客户端程序 client.c ************/

/********************************************************************************************

** Name:client.c

** Used to study the network programming in Linux OS.

** Showing how to use the functions,

** like socket,bind,listen,accept and write.

** This is the client program.

** Author:zeickey

** Date:2006/9/16

** Copyright (c) 2006,All Rights Reserved!

*********************************************************************************************/

#include

#include

#include

#include

#include

#include

#include

int main(int argc, char *argv[])

{

int sockfd;

char buffer[1024];

struct sockaddr_in server_addr;

//struct hostent *host;

char *ip;

int portnumber,nbytes;

if(argc!=3)

{

fprintf(stderr,"Usage:%s ip portnumber/a/n",argv[0]);

return 1;

}

//if((host=gethostbyname(argv[1]))==NULL)

printf("agrv[1] = %s/n",argv[1]);

if( strlen(ip=argv[1])< 7 )

{

fprintf(stderr,"Get Ip address error/n");

return 1;

}

if((portnumber=atoi(argv[2]))<0)

{

fprintf(stderr,"Usage:%s hostname portnumber/a/n",argv[0]);

return 1;

}

/* 客户程序开始建立 sockfd描述符 */

if((sockfd=socket(AF_INET,SOCK_STREAM,0))==-1)

{

fprintf(stderr,"Socket Error:%s/a/n",strerror(errno));

return 1;

}

/* 客户程序填充服务端的资料 */

bzero(&server_addr, sizeof(server_addr));

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(portnumber);

//server_addr.sin_addr = *( (struct in_addr *)host->h_addr );

//server_addr.sin_addr.s_addr = inet_addr(host->h_addr);

server_addr.sin_addr.s_addr = inet_addr(ip);

//server_addr.sin_addr.s_addr = ((struct in_addr*)(host->h_addr))->s_addr;

/* 客户程序发起连接请求 */

if(connect(sockfd,(struct sockaddr *)(&server_addr),sizeof(struct sockaddr))==-1) {

fprintf(stderr,"Connect Error:%s/a/n",strerror(errno));

return 1;

}

/* 连接成功了 */

if((nbytes=read(sockfd,buffer,1024))==-1)

{

fprintf(stderr,"Read Error:%s/n",strerror(errno));

return 1;

}

buffer[nbytes]='/0';

printf("I have received:%s/n",buffer);

/* 结束通讯 */

close(sockfd);

return 0;

}

MakeFile

这里我们使用GNU 的make实用程序来编译. 关于make的详细说明见 Make 使用介绍

######### Makefile ###########

all:server client

server:server.c

gcc $^ -o $@

client:client.c

gcc $^ -o $@

运行make后会产生两个程序server(服务器端)和client(客户端) 先运行./server portnumber& (portnumber随便取一个大于1204且不在/etc/services中出现的号码就用8888好了),然后运行 ./client localhost 8888 看看有什么结果. (你也可以用telnet和netstat 试一试.) 上面是一个最简单的网络程序,不过是不是也有点烦.上面有许多函数我们还没有解释. 我会在下一章进行的详细的说明.

客户端代码相对来说要简单一些,首先通过服务器域名获得其IP地址,然后创建一个socket,调用connect函数与服务器建立连接,连接成功之后接收从服务器发送过来的数据,最后关闭socket,结束程序。

无连接的客户/服务器程序的在原理上和连接的客户/服务器是一样的,两者的区别在于无连接的客户/服务器中的客户一般不需要建立连接,而且在发送接收数据时,需要指定远端机的地址。

关于阻塞(blocking)的概念和select()函数当服务器运行到accept语句时,而没有客户连接服务请求到来,那么会发生什么情况?这时服务器就会停止在accept语句上等待连接服务请求的到来;同样,当程序运行到接收数据语句时,如果没有数据可以读取,则程序同样会停止在接收语句上。这种情况称为blocking。但如果你希望服务器仅仅注意检查是否有客户在等待连接,有就接受连接;否则就继续做其他事情,则可以通过将Socke设置为非阻塞方式来实现:非阻塞socket在没有客户在等待时就使accept调用立即返回。

#include unistd.h

#include fcntl.h

. . . . ; sockfd = socket(AF_INET,SOCK_STREAM,0);

fcntl(sockfd,F_SETFL,O_NONBLOCK); . . . . .

通过设置socket为非阻塞方式,可以实现“轮询”若干Socket。当企图从一个没有数

据等待处理的非阻塞Socket读入数据时,函数将立即返回,并且返回值置为-1,并且errno置为EWOULDBLOCK。但是这种“轮询”会使CPU处于忙等待方式,从而降低性能。考虑到这种情况,假设你希望服务器监听连接服务请求的同时从已经建立的连接读取数据,你也许会想到用一个accept语句和多个recv()语句,但是由于accept及 recv都是会阻塞的,所以这个想法显然不会成功。

调用非阻塞的socket会大大地浪费系统资源。而调用select()会有效地解决这个问题,它允许你把进程本身挂起来,而同时使系统内核监听所要求的一组文件描述符的任何活动,只要确认在任何被监控的文件描述符上出现活动, select()调用将返回指示该文件描述符

已准备好的信息,从而实现了为进程选出随机的变化,而不必由进程本身对输入进行测试

而浪费CPU开销。 Select函数原型为:

int select(int numfds,fd_set *readfds,fd_set *writefds,

fd_set *exeptfds,struct timeval *timeout);

其中readfds、writefds、exceptfds分别是被select()监视的读、写和异常处理的文件描

述符集合。如果你希望确定是否可以从标准输入和某个socket描述符读取数据,你只需

要将标准输入的文件描述符0和相应的sockdtfd加入到readfds集合中;numfds的值是

需要检查的号码最高的文件描述符加1,这个例子中numfds的值应为sockfd+1;当

select返回时,readfds将被修改,指示某个文件描述符已经准备被读取,你可以通过

FD_ISSSET()来测试。为了实现fd_set中对应的文件描述符的设置、复位和测试,它提供了一组宏:

FD_ZERO(fd_set *set)----清除一个文件描述符集;

FD_SET(int fd,fd_set *set)----将一个文件描述符加入文件描述符集中;

FD_CLR(int fd,fd_set *set)----将一个文件描述符从文件描述符集中清除

FD_ISSET(int fd,fd_set *set)----试判断是否文件描述符被置位。

Timeout参数是一个指向struct timeval类型的指针,它可以使select()在等待timeout长时间后没有文件描述符准备好即返回。struct timeval数据结构为:

struct timeval {

int tv_sec; /* seconds */

int tv_usec; /* microseconds */

};

我们通过程序3来说明:

#include sys/time.h

#include sys/types.h

#include unistd.h

#define STDIN 0 /*标准输入文件描述符*/

main()

{

struct timeval tv;

fd_set readfds;

https://www.wendangku.net/doc/339731834.html,_sec = 2;

https://www.wendangku.net/doc/339731834.html,_usec = 500000;

FD_ZERO(&readfds);

FD_SET(STDIN,&readfds);

/* 这里不关心写文件和异常处理文件描述符集合 */

select(STDIN+1, &readfds, NULL, NULL, &tv);

if (FD_ISSET(STDIN, &readfds)) printf("A key was pressed!");

else printf("Timed out.");

}

(程序3)

select()在被监视端口等待2.5秒钟以后,就从select返回

2.9 总结

总的来说网络程序是由两个部分组成的--客户端和服务器端.它们的建立步骤一般是: 服务器端

socket-->bind-->listen-->accept

客户端

socket-->connect

socket编程实现客户端和服务器端通信

#include "" #include <> #include #pragma comment(lib,"") #define BUF_SIZE 64 int _tmain(int argc,_TCHAR* argv[]) { WSADATA wsd; S OCKET sServer; S OCKET SClient; i nt retVal; c har buf[BUF_SIZE]; i f (WSAStartup(MAKEWORD(2,2),&wsd)!=0) {printf("wsastartup failed!\n"); return 1; } s Server=socket(AF_INET,SOCK_STREAM,IPPROTO_TC P); i f (INVALID_SOCKET==sServer) {printf("socket failed!\n"); WSACleanup(); return -1; } S OCKADDR_IN addrServ; =AF_INET; =htons(9990); retVal=bind(sServer,(const struct sockaddr*) &addrServ,sizeof(SOCKADDR_IN)); i f (SOCKET_ERROR==retVal) {printf("bind failed!\n"); closesocket(sServer); WSACleanup(); return -1; } retVal=listen(sServer,1); i f (SOCKET_ERROR==retVal) {printf("listen failed!\n"); closesocket(sServer); WSACleanup(); return -1; } p rintf("tcp server start...\n"); s ockaddr_in addrClient; i nt addrClientlen=sizeof(addrClient); S Client=accept(sServer,(sockaddr FAR*)&addrClient,&addrClientlen); i f (INVALID_SOCKET==SClient) { printf("accept failed!\n"); closesocket(sServer); WSACleanup(); return -1; } w hile(true) { ZeroMemory(buf,BUF_SIZE); retVal=recv(SClient,buf,BUF_SIZE,0); if (SOCKET_ERROR==retVal) { printf("recv failed!\n"); closesocket(sServer); closesocket(SClient); WSACleanup(); return -1; } SYSTEMTIME st; GetLocalTime(&st); char sDataTime[30]; sprintf(sDataTime,"%4d-%2d-%2d %2d:%2d:%2d",, ,,,,; printf("%s,recv from client [%s:%d]:%s\n",sDataTime,inet_ntoa,,buf); if (StrCmp(buf,"quit")==0) { retVal=send(SClient,"quit",strlen("quit"),0); break; } else { char msg[BUF_SIZE]; sprintf(msg,"message received -%s",buf); retVal=send(SClient,msg,strlen(msg),0); if (SOCKET_ERROR==retVal) { printf("send failed!\n"); closesocket(sServer); closesocket(SClient); WSACleanup(); return -1; } } } c losesocket(sServer); c losesocket(SClient);

个人通讯录管理系统java源代码

package cn pab import java.util.List; import java.util.Scanner; import cn.pab.dao.PersonDao; import cn.pab.dao.TypeDao; import https://www.wendangku.net/doc/339731834.html,erDao; import cn.pab.dao.impl.PersonDaoImpl; import cn.pab.dao.impl.TypeDaoImpl; import https://www.wendangku.net/doc/339731834.html,erDaoImpl; import cn.pab.entity.Person; import cn.pab.entity.Type; /** * 业务类 */ public class PABmanager { /** * 系统启动 */ public static void main(String[] args) { Scanner input = new Scanner(System.in); UserDao userDao = new UserDaoImpl(); TypeDao typeDao = new TypeDaoImpl(); PersonDao personDao = new PersonDaoImpl(); System.out.println( " System.out.print("\ n 欢迎使用个人通讯录管理系统**********"); 请选择操作(1. 系统登录 2. 密码修改 3. 取消):"); String in = input.next(); if ("1".equals(in)) { boolean islogin = userDao.login(); if(islogin){ System.out.println("******** *** 成功登录个人通讯录管理系统 nm\、\ ? //System.out.print(" \n 退出系统):"); }else{ System.out.println(" System.exit(-1); } }else if ("2".equals(in)) { 请选择操作(1. 类别管理 2. 联系人管理 3. 用户名或密码错误,不能登录!");

关于客户端与数据库服务器端的时间同步问题

关于客户端与数据库服务器端的时间同步问题 这是一个做C/S的管理软件开发时经常被忽略的问题,客户端的时间与服务器的时间如果有偏差,数据统计、报表等等肯定会有“意外”的情况发生。 意图很简单:从数据库服务器获取到时间,根据这个时间修改当前客户端电脑时间。 用Sql的函数getdate(),是比较容易的。 我们是基于dotnet4.0、EntityFramework开发软件,所以希望用ESQL的方式获取数据库服务器的时间,但昨天折腾了半天,还没搞定。 如果有哪位同学已经解决了这个问题,希望能指点一下! 暂时解决,之所以说是暂时,是因为并没有用Esql的方式,而是用T-Sql的方式。 以下是我的过程: System.Data.EntityClient.EntityConnection 这个是实体概念模型与数据源的连接,继承自DbConnection 在这个连接下CreateCommand(),就需要写Esql语句,我的语句是"SELECT VALUE CurrentDateTime()",却是语法错误。翻遍了手册和网络查询,没有任何有用的结果。 但在这个连接对象下有一个属性StoreConnection,返回的是Sql方式的连接,在这个下面CreateCommand(),可以写T-Sql语句,我的语句是"SELECT getdate()",运行成功。

以上是程序代码例子: //与数据库服务器的时间进行同步 System.Data.EntityClient.EntityConnection conn = (System.D ata.EntityClient.EntityConnection)Blemployee.myData.Conne ction ; IDbConnection conn0=conn.StoreConnection; IDbCommand comm =conn0.CreateCommand(); //https://www.wendangku.net/doc/339731834.html,mandText = "SELECT VALUE CurrentDateTime()"; https://www.wendangku.net/doc/339731834.html,mandText = "SELECT getdate()"; https://www.wendangku.net/doc/339731834.html,mandType = CommandType.Text; if (comm.Connection.State != ConnectionState.Open) comm.Connection.Open(); object tt= comm.ExecuteScalar(); DateTime sqlDT = Convert.ToDateTime(tt); SetLocalTime(sqlDT); //设置本机时间

客户端与服务器端交互原理

客户端与服务器端交互原理 经常看到HTTP客户端与服务器端交互原理的各种版本的文章,但是专业术语太多,且流程过于复杂,不容易消化。于是就按照在Servlet 里面的内容大致做了一些穿插。本来连Tomcat容器和Servlet的生命周期也准备在这里一起写的,但怕过于庞大,于是就简单的引用了一些Servlet对象。这样的一个整个流程看下来,相信至少在理解HTTP协议和request和response是如何完成从请求到生成响应结果回发的。在后续的一些文章里会专门讲一讲Tomcat和Servlet 是如何处理请求和完成响应的,更多的是说明Servlet的生命周期。 HTTP介绍 1. HTTP是一种超文本传送协议(HyperText Transfer Protocol),是一套计算机在网络中通信的一种规则。在TCP/IP体系结构中,HTTP属于应用层协议,位于TCP/IP协议的顶层。 2. HTTP是一种无状态的协议,意思是指在Web浏览器(客户端)和Web 服务器之间不需要建立持久的连接。整个过程就是当一个客户端向服务器端发送一个请求(request),然后Web服务器返回一个响应(respo nse),之后连接就关闭了,在服务端此时是没有保留连接的信息。 3. HTTP遵循请求/响应(request/response)模型的,所有的通信交互都被构造在一套请求和响应模型中。 4. 浏览Web时,浏览器通过HTTP协议与Web服务器交换信息,Web服务器向Web 浏览器返回的文件都有与之相关的类型,这些信息类型的格式由 MIME 定义。 HTTP定义的事务处理由以下四步组成: 1. 建立连接。 2?客户端发送HTTP请求头。 3. 服务器端响应生成结果回发。 4. 服务器端关闭连接,客户端解析回发响应头,恢复页面。

(完整word版)通讯录管理系统源代码

源代码: #include "stdio.h" #include "stdlib.h" #include "string.h" #include "conio.h" #include "stdlib.h" #define null 0 struct record { char name[20]; char phone[20]; char adress[40]; char postcode[10]; char e_mail[30]; }student[500]; struct LinkList { struct record US; struct LinkList *next; }a; struct LinkList *head=null; int num=0; FILE *fp; int menu_select(); int adduser(); int list(); int search(); int display(); int add(); int listbyname(); int dele(); int save(); int exit(); void main() {

system("cls"); for(;;) { switch(menu_select()) { case 0:adduser();break; case 1:list();break; case 2:search();break; case 3:display();break; case 4:add();break; case 5:listbyname();break; case 6:dele();break; case 7:save();break; case 8:exit(0); } } } menu_select() { char s[80]; int a; printf("*_* press any key enter menu! *_* \n"); getch(); system("cls"); printf("\t\t********************MENU*********************\n\n"); printf("\t\t 0. 输入记录\n"); printf("\t\t 1. 显示记录\n"); printf("\t\t 2. 按姓名查找\n"); printf("\t\t 3. 按电话号码查找\n"); printf("\t\t 4. 插入记录\n"); printf("\t\t 5. 按姓名排序\n"); printf("\t\t 6. 删除记录\n"); printf("\t\t 7. 记录保存文件\n"); printf("\t\t 8. Quit\n"); printf("\t\t***********************************************\n"); do{ printf("\n Enter you choice(0~11):"); scanf("%s",s); a=atoi(s); } while (a<0||a>11); return a;

服务器端与客户端建立并连接小Demo

服务器端代码: using https://www.wendangku.net/doc/339731834.html,; using https://www.wendangku.net/doc/339731834.html,.Sockets; Static void Main(string[] args){ Socket serverSocket=new Socket(AddressFamily.InterNetWork,SocketType.Stream,ProtocalTy pe.TCP); //new一个Socket对象,注意这里用的是流式Socket(针对于面向连接的TCP服务应用)而不是数据报式Socket(针对于面向无连接的UDP服务应用)。 IPAddress serverIP=IPAddress.Parse("127.0.0.1"); int port=2112; IPEndPoint ipEndPoint=new IPEndPoint(serverIP,port);//网络节点对象 serverSocket.Bind(ipEndPoint);//将结点绑定到套接字上 serverSocket.Listen(10);//设置连接队列的最大长度,可根据服务器的性能,可以设置更大程度。 Console.WriteLine("服务器已就绪准备客户端连接。。。。"); while(true){//循环监听端口,得到客户端连接 Socket socket=serverSocket.Accept();//当有客户端连接时,就产生一个socket实例 SessionServer sserver=new SessionServer(socket);//将socket实例传入到消息处理类中 Thread t=new Thread(sserver.GetClientMsg);//当有一个客户端连接,就启动一个线程来处理此客户端的消息 t.Start();

服务器和客户端通信

实验六基于TCP/IP的网络编程 1 实验目的 MFC提供的关于网络应用的类CSocket是一个比较高级的封装,使用它编制出属于自己的网络应用程序,可以编一个属于自己的网络通讯软件。通过这个实验,同学们也可以增进对于TCP/IP协议的理解。 2 实验内容 基于TCP/IP的通信基本上都是利用SOCKET套接字进行数据通讯,程序一般分为服务器端和用户端两部分。设计思路(VC6.0下): 第一部分服务器端 一、创建服务器套接字(create)。 二、服务器套接字进行信息绑定(bind),并开始监听连接(listen)。 三、接受来自用户端的连接请求(accept)。 四、开始数据传输(send/receive)。 五、关闭套接字(closesocket)。 第二部分客户端 一、创建客户套接字(create)。 二、与远程服务器进行连接(connect),如被接受则创建接收进程。 三、开始数据传输(send/receive)。 四、关闭套接字(closesocket)。 CSocket的编程步骤:(注意我们一定要在创建MFC程序第二步的时候选上Windows Socket 选项,其中ServerSocket是服务器端用到的,ClientSocket是客户端用的。) (1)构造CSocket对象,如下例: CSocket ServerSocket; CSocket ClientSocket; (2)CSocket对象的Create函数用来创建Windows Socket,Create()函数会自行调用Bind()函数将此Socket绑定到指定的地址上面。如下例: ServerSocket.Create(823); //服务器端需要指定一个端口号,我们用823。ClientSocket.Create(); //客户端不用指定端口号。 (3)现在已经创建完基本的Socket对象了,现在我们来启动它,对于服务器端,我们需要这个Socket不停的监听是否有来自于网络上的连接请求,如下例: ServerSocket.Listen(5);//参数5是表示我们的待处理Socket队列中最多能有几个Socket。(4)对于客户端我们就要实行连接了,具体实现如下例: ClientSocket.Connect(CString SerAddress,Unsinged int SerPort);//其中SerAddress是服务器的IP地址,SerPort是端口号。 (5)服务器是怎么来接受这份连接的呢?它会进一步调用Accept(ReceiveSocket)来接收它,而此时服务器端还须建立一个新的CSocket对象,用它来和客户端进行交流。如下例:CSocket ReceiveSocket; ServerSocket.Accept(ReceiveSocket); (6)如果想在两个程序之间接收或发送信息,MFC也提供了相应的函数。 (7)代码 package test.socket3; import java.awt.event.ActionEvent; import java.awt.event.ActionListener;

c#带界面-客户端与服务器通信TCP

服务器端界面 服务器端代码: using System; using System.Collections.Generic; using https://www.wendangku.net/doc/339731834.html,ponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using https://www.wendangku.net/doc/339731834.html,.Sockets; using System.Threading; using System.IO; using https://www.wendangku.net/doc/339731834.html,; using System.Collections; namespace IMS.Server { public partial class Server : Form { TcpListener myListener; TcpClient tcpClient = new TcpClient(); Thread mythread; NetworkStream ns;

public Server() { InitializeComponent(); } private void Server_Load(object sender, EventArgs e) { Control.CheckForIllegalCrossThreadCalls = false; mythread = new Thread(new ThreadStart(receive)); mythread.IsBackground = true; mythread.Start(); } private void receive() { myListener = new TcpListener(IPAddress.Parse("192.168.1.106"), 8080); myListener.Start(); tcpClient = myListener.AcceptTcpClient(); while (true) { string rec = ""; ns = tcpClient.GetStream(); byte[] bytes = new byte[1024]; ns.Read(bytes,0,bytes.Length); rec = Encoding.Unicode.GetString(bytes); richTextBox1.Text = rec; ns.Flush(); } } private void btnSend_Click(object sender, EventArgs e) { try { ns = tcpClient.GetStream(); byte[] bytes = new byte[1024]; // bytes = Encoding.Unicode.GetBytes(sendmsg); bytes = Encoding.Unicode.GetBytes(richTextBox1.Text +"\r\n" + "服务器说:" + richTextBox2.Text);

服务器与移动客户端通信设计

服务器与移动客户端通信设计 软件的通信方式是开发过程中的重要一环。智能手机的快速发展,使得手机不仅作为一般通讯工具,更进一步成为一款便携式移动互联网终端。通常来说,Android操作系统的手机使用Android系统自身集成的HttpClient直接访问网络资源[35]。 服务器MySQL 图4.7 客户端与数据库通信方式示意图 Fig.4.7 Communication mode between client and database HttpClient是一种HTTP协议的支撑工具包,它能够为客户端提供一系列高效、便捷、多功能的编程工具,且能够支持最新的HTTP协议,操作简单。对于HTTP连接中的各种复杂问题都能够予以有效的解决。如上图4.7所示,HttpClient 实现HTTP协议的方法,主要是GET与POST两种方法。 1.GET方法。HTTP协议的GET方法即利用HttpClient向客户端发送GET 请求,这一过程一般用来进行客户端的信息查询操作,例如,在本次客户端中, 其可以用于 检修故障信息、零部件信息以及检修工单信息的查询。具体的实现步骤有以下几 步[36]: 1) 创建HttpClient实例;2) 创建HttpPost实例。 3) 将需要发送的GET请求参数直接连接至URL地址中,并用“?”将参 数与地址隔开,每个参数之间用“&”隔开,若有需要额外添加的参数,可以选 择调用setParams()的方式来进行添加。 4) 调用第一步创建的HttpClient实例中的execute()方法来执行第二步创建 的HttpGet实例,并读取Response对象。 5) 采取调用getAllHeaders()、getHeaders(String name)等方式获取服务器响应,并释放连接,无论上述第四步的执行过程是否成功,都必须释放连接,允许 用户获得服务器的响应内容。 2.POST方法。HTTP协议的POST方法即利用HttpClient向客户端发送POST 请求,该请求过程一般用来进行客户端的信息修改操作,例如,在本课题所设计 的客户端中,其可以用于对登录、密码等修改等操作。其具体的实现过程也分为 五个步骤:

Linux网络编程-简单的客户端和服务器通讯程序开发入门

Linux网络编程-基础知识(1) 1. Linux网络知识介绍 1.1 客户端程序和服务端程序 网络程序和普通的程序有一个最大的区别是网络程序是由两个部分组成的--客户端和服务器端. 网络程序是先有服务器程序启动,等待客户端的程序运行并建立连接. 一般的来说是服务端的程序在一个端口上监听,直到有一个客户端的程序发来了请求. 1.2 常用的命令 由于网络程序是有两个部分组成,所以在调试的时候比较麻烦,为此我们有必要知道一些常用的网络命令 netstat 命令netstat是用来显示网络的连接,路由表和接口统计等网络的信息. netstat有许多的选项我们常用的选项是-an 用来显示详细的网络状态.至于其它的选项我们可以使用帮助手册获得详细的情况. telnet telnet是一个用来远程控制的程序,但是我们完全可以用这个程序来调试我们的服务端程序的. 比如我们的服务器程序在监听8888端口,我们可以用telnet localhost 8888来查看服务端的状况. 1.3 TCP/UDP介绍 TCP(Transfer Control Protocol)传输控制协议是一种面向连接的协议, 当我们的网络程序使用这个协议的时候,网络可以保证我们的客户端和服务端的连接是可靠的,安全的. UDP(User Datagram Protocol)用户数据报协议是一种非面向连接的协议, 这种协议并不能保证我们的网络程序的连接是可靠的,所以我们现在编写的程序一般是采用TCP协议的. Linux网络编程-简单的客户端和服务器通讯程序开发入门(2)简介: 本文详细介绍了Linux下B/S结构的客户端服务器通讯程序的开发入门, 其中对重要的网络函数和结构体作了详细的说明和分析, 最后给出一个简单的客户端和服务器通讯程序示例以加深理解。 2. 初等网络函数介绍(TCP) Linux系统是通过提供套接字(socket)来进行网络编程的.网络程序通过socket和其它几个函数的调用, 会返回一个通讯的文件描述符,我们可以将这个描述符看成普通的文件的描述符来操作, 这就是linux的设备无关性的好处.我们可以通过向描述符读写操作实现网络之间的数据交流. 2.1 socket

客户端与服务器通信

SimpleChatServer.java package test.chatclient; import java.io.*; import https://www.wendangku.net/doc/339731834.html,.*; import java.util.*; public class SimpleChatServer { ArrayList clientOutputStreams; public static void main(String[] args){ new SimpleChatServer().go(); } public class ClientHandler implements Runnable{ BufferedReader reader; Socket sock; public ClientHandler(Socket clientSocket){ try{ sock = clientSocket; InputStreamReader isReader = new InputStreamReader(sock.getInputStream()); reader = new BufferedReader(isReader); }catch(Exception ex){ ex.printStackTrace(); } } @Override public void run() { String message; try{ while((message = reader.readLine()) != null){ System.out.println("read " + message); tellEveryone(message); } }catch(Exception ex){ ex.printStackTrace(); } } } public void tellEveryone(String message){ Iterator it = clientOutputStreams.iterator(); while(it.hasNext()){

个人通讯录管理系统C语言源程序优秀版

个人通讯录管理系统C语言源程序优秀版 Last revision date: 13 December 2020.

#i n c l u d e/*头文件*/ #include //包含最常用的系统函数 #include //关于字符数组的函数定义的头文件 #include //控制台输入输出 //定义结构体 struct tongxunlu /*定义通讯录结构体变量*/ { char xingming[20]; /*定义输入名字的数组*/ char dianhua[20]; /*定义输入电话号码的数组*/ char dizhi[40]; /*定义输入地址的数组*/ } txl[100]; //默认100个数据 int n=0;//记录数据联系人数量 FILE *fp; /*定义文件*/ //程序用到的所有函数 void zhucaidan(); /*主菜单函数*/ void zengjia(); /*增加联系人函数*/ void readfile(); /*文件中读入函数*/ void writefile(); /*文件中写入函数*/ void xiugai(); /*修改联系人函数*/ void xiugai_xingming(); /*姓名修改*/ void xiugai_dianhua(); /*电话号码修改*/ void chazhao(); /*查找联系人函数*/ void chazhao_xingming(); /*按姓名查找*/ void chazhao_dianhua(); /*按号码查找*/ void shanchu(); /*删除联系人函数*/ void shanchu_quanbu(); /*全部删除*/ void shanchu_dange(); /*单个删除*/ void xianshi(); /*号码显示*/ //程序主函数模块六 void main() /*主函数main*/ { readfile(); /*读入文件*/ while(1) /* 循环(永远进行)*/ { zhucaidan(); /*调用主菜单函数*/ } } //读取文件函数部分开始模块七 void readfile() { if((fp=fopen("c:\\通讯录.txt","r"))==NULL) /*以只读方式打开判定文件是否为空*/ { printf("\n\t\t\t 通讯录文件不存在"); /*判断结论*/

Socket服务器与客户端双向通信实例

Socket服务器与客户端双向通信实例 using System; using System.Collections.Generic; using https://www.wendangku.net/doc/339731834.html,ponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using https://www.wendangku.net/doc/339731834.html,; using https://www.wendangku.net/doc/339731834.html,.Sockets;//添加命名空间 using System.Threading;//添加命名空间 namespace WFAsynSocket { public partial class Form1 : Form { Thread LisThread;

Socket LisSocket; Socket newSocket; EndPoint point; string strmes = String.Empty; int port = 8000;//定义侦听端口号 public Form1() { InitializeComponent(); } private void btn_Listen_Click(object sender, EventArgs e) { LisThread = new Thread(new ThreadStart(BeginListern));//开线程执行BeginListern方法 LisThread.Start();//线程开始执行 } public IPAddress GetIP() { /*获取本地服务器的ip地址 */ IPHostEntry iep = Dns.GetHostEntry(Dns.GetHostName()); IPAddress ip = iep.AddressList[0]; return ip; } public void BeginListern() { LisSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, Proto colType.Tcp);//实例化Socket IPAddress ServerIp = GetIP();/*获取本地服务器的ip地址 */ IPEndPoint iep = new IPEndPoint(ServerIp, port); LisSocket.Bind(iep); /*将Socket绑定ip */ toolStripStatusLabel1.Text = iep.ToString() + "正在监听"; LisSocket.Listen(50); //Socket开始监听 newSocket = LisSocket.Accept();//获取连接请求的Socket /*接收客户端Socket所发的信息 */ while (true) { try {

客户端与服务器端的Socket通信

2009.17 网络与通信 NETWORK&COMMUNICATION 1引言 大部分网络协议的实现都由客户端(Client)和服务器端 (Server)来协作完成。这种模型本质上涉及两个不同的程序, 通常这两个程序在不同机器上运行。这些机器之间都有网络连接。服务器端程序提供服务并对来自客户程序的请求作成响应。而客户端程序则是在使用者和服务器端程序之间建立某种沟通的渠道,或者是作为使用服务器端提供的某种网络服务的工具。 一个典型的服务器与客户机之间的交互可能如下所示:(1)客户机提出一个请求; (2)服务器收到客户机的请求,进行分析处理;(3)服务器将运行处理的结果返回给客户机。 通常一个服务器需要向多个客户机提供服务。因此对服务器来说,还需要考虑如何有效地处理多个客户的请求。 2服务器与客户端的Socket 通信类型 Socket 的连接类型可以分为两种,分别是面向连接的字节 流类型(Sock_stream)和面向无连接数据报类型(Sock_dgram)。 面向无连接数据报类型的Socket 工作流程比较简单,双方不需要进行太多的沟通与交互。客户机直接将用户的请求打包发送到服务器端,省略了建立一个固定信息通道的过程。服务器端也是直接将处理的结果发送给客户端。其工作流程如图1所示。 面向连接的字节流类型的Socket 工作中有比较严格的操作次序,工作的原理也比较复杂。在这种类型的Socket 的工作过程中,必须首先启动服务器端,通过调用Socket ()函数建立一个Socket 对象,然后调用Bind ()函数将该Socket 对象和本地网络地址绑定到一起,再调用Listen ()函数使该Socket 对象处于侦听状态,并规定它的最大请求的数量。其工作流程如图2所示。 总的来说,无连接和面向连接的通信方式各有长处和短处。在仅仅涉及少量的信息传递的场合可以使用无连接操作;如果涉及大量信息传递的场合可以采用面向连接操作。 3Delphi 的Socket 组件 ClientSocket 组件为客户端组件。它是通信的请求方,也 就是说,它是主动地与服务器端建立连接。 客户端与服务器端的Socket 通信 夏 玲 摘 要:介绍有关Socket 通讯应用的基本知识,并通过客户端和服务器端的Delphi 编程实 例,说明两者是如何进行通信的。 关键词:Socket ;Delphi ;通信;客户端;服务器端 图1 无连接Socket 操作流程 图2 面向连接Socket 操作流程 49

C语言通讯录管理系统程序代码

一、课程设计题目及要求 题目通讯录管理系统 任务:自学C语言中相关知识,设计出通讯录管理系统。要求如下所述: ◆建立通讯录信息,信息至少包含编号、姓名、年龄、电话、通讯地址、电子 邮箱等;; ◆能够提供添加、删除和修改通讯录信息的功能; ◆能够提供按姓名或电话等查询; ◆将通讯录保存在文件中; ◆能够按表格方式输出通讯录信息。 二、系统设计方案 (一)总体框架图: 通讯录管理系统:1、录入通讯录信息 2、修改通讯录信息 3、查询通讯录信息 4、浏览通讯录信息 5、增加通讯录信息 6、推出系通讯录统 (二)模块设计 模块一:头文件,变量定义,函数的声明 对系统所使用的变量进行定义,对函数进行声明 模块二:录入通讯录信息 声明函数void readfile(),说明一个文件指针FILE *fp 打开文件"student.txt" 模块三:通讯录信息的查找 声明void seek()为查找函数,通过switch(item)设定用学号查找,用姓名查找两个分支 模块四:通讯录信息的修改

声明void modify()为学生信息修改函数,通过switch(item)设定所要修改的项目模块五:通讯录信息按学号排序 声明void sort()将录入通讯录信息系按升序排列,用的是“冒泡排序法”实现排序模块六:加通讯录信息 声明void insert()插入通讯录信息,先通过判断通讯录是否存在,若否则继续输入,若是跳出,重新循环 模块七:通讯录信息 声明void del()实现通讯录信息删除,通过学号对比确定要删除的信息,然后用后一个替换掉。 模块八:示学生信息 通过display()函数输出通讯录信息 模块九;存信息 通过fp=fopen("student.txt","w");写入信息 模块十:界面菜单 通过switch(num)调用,以上各函数,实现功能 三、设计详情 1.主函数 主函数设计要求简洁,只提供部分提示语和函数的调用 【程序】

Linux客户端服务器通信(2)

本文介绍了在Linux环境下的socket编程常用函数用法及socket编程的一般规则和客户/ 服务器模型的编程应注意的事项和常遇问题的解决方法,并举了具体代码实例。要理解 本文所谈的技术问题需要读者具有一定C语言的编程经验和TCP/IP方面的基本知识。要 实习本文的示例,需要 Linux下的gcc编译平台支持。 Socket定义 网络的Socket数据传输是一种特殊的I/O, Socket也是一种文件描述符。Socket 也具有一个类似于打开文件的函数调用—Socket(),该函数返回一个整型的Socket描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。常用的Socket类型有两种:流式Socket—SOCK_STREAM和数据报式 Socket—SOCK_DGRAM。流式是一种面向连接的Socket,针对于面向连接的TCP服务应用;数据报式Socket是一种无连接的Socket,对应于无连接的UDP服务应用。 Socket编程相关数据类型定义 计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。Intenet上数据以高位字节优先顺序在网络上传输,所以对于在内部是以低位字节优先方式存储数据的机器,在Internet上传输数据时就需要进行转换。 我们要讨论的第一个结构类型是:struct sockaddr,该类型是用来保存socket信息的: struct sockaddr { unsigned short sa_family; /* 地址族, AF_xxx */ char sa_data[14]; /* 14 字节的协议地址 */ }; sa_family一般为AF_INET;sa_data则包含该socket的IP地址和端口号。 另外还有一种结构类型: struct sockaddr_in { short int sin_family; /* 地址族 */ unsigned short int sin_port; /* 端口号 */ struct in_addr sin_addr; /* IP地址 */ unsigned char sin_zero[8]; /* 填充0 以保持与struct sockaddr同样大 小 */ }; 这个结构使用更为方便。sin_zero(它用来将sockaddr_in结构填充到与 struct sockaddr同样的长度)应该用bzero ()或memset()函数将其置为零。指向 sockaddr_in 的指针和指向sockaddr的指针可以相互转换,这意味着如果一个函数所需参数类型是sockaddr时,你可以在函数调用的时候将一个指向sockaddr_in的指针转换为 指向sockaddr的指针;或者相反。 sin_family通常被赋AF_INET;in_port和sin_addr应该转换成为网络字节优先顺序;而sin_addr则不需要转换。 我们下面讨论几个字节顺序转换函数:

通讯录管理系统调试源代码

#include #include #include #include #include using namespace std; #define FILENAME "C:\\phonebook.txt" class Person{ public: string name; string sex; string address; stringtel; stringshuxing; Person(string na) {name=na;} Person(string na,stringse,stringadd,stringte,stringsx) { name=na;sex=se;address=add;tel=te;shuxing=sx; } void display(){ cout<

相关文档
相关文档 最新文档