文档库 最新最全的文档下载
当前位置:文档库 › 数值分析试题及答案汇总

数值分析试题及答案汇总

数值分析试题及答案汇总
数值分析试题及答案汇总

数值分析试题及答案汇

TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

数值分析试题

一、填空题(2 0×2′) 1.

??

????-=?

?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。

2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]=

0 。

3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____,

‖AX ‖∞≤_15_ __。

4. 非线性方程f (x )=0的迭代函数x =(x )在有解区间满足 |’(x )| <1 ,则使用该迭代函数

的迭代解法一定是局部收敛的。

5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。

6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差

商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。

7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n

i i x a 0)( 1 ;所以当系数

a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使

20的近似值的相对误差小于%,至少要取 4 位有效数字。

9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)

收敛于方程组的精确解x *的充分必要条件是 (B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

11.牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

12.线性方程组的松弛迭代法是通过逐渐减少残差r i (i=0,1,…,n)来实现的,其中的残差

r i= (b i-a i1x1-a i2x2-…-a in x n)/a ii,(i=0,1,…,n)。

13.在非线性方程f(x)=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且

f(x)的二阶导数不变号,则初始点x0的选取依据为 f(x0)f”(x0)>0 。

14.使用迭代计算的步骤为建立迭代函数、选取初值、迭代计算。

二、判断题(10×1′)

1、若A是n阶非奇异矩阵,则线性方程组AX=b一定可以使用高斯消元法求解。

( × )

2、解非线性方程f(x)=0的牛顿迭代法在单根x*附近是平方收敛的。 ( )

3、若A为n阶方阵,且其元素满足不等式

则解线性方程组AX=b的高斯——塞德尔迭代法一定收敛。 ( × )

4、样条插值一种分段插值。 ( )

5、如果插值结点相同,在满足相同插值条件下所有的插值多项式是等价的。 ( )

6、从实际问题的精确解到实际的计算结果间的误差有模型误差、观测误差、截断

误差及舍入误差。( )

7、解线性方程组的的平方根直接解法适用于任何线性方程组AX=b。 ( × )

8、迭代解法的舍入误差估计要从第一步迭代计算的舍入误差开始估计,直到最后一

步迭代计算的舍入误差。 ( × )

9、数值计算中的总误差如果只考虑截断误差和舍入误差,则误差的最佳分配原则

是截断误差=舍入误差。 ( )

10、插值计算中避免外插是为了减少舍入误差。 ( × )

三、计算题(5×10′)

1、用列主元高斯消元法解线性方程组。 解答:

(1,5,2)最大元5在第二行,交换第一与第二行: L 21=1/5=,l 31=2/5= 方程化为:

(,)最大元在第三行,交换第二与第三行: L32==,方程化为: 回代得:

???

??-===00010.1 99999.500005.33

21x x x 2、用牛顿——埃尔米特插值法求满足下列表中插值条件的四次插值多项式P 4(x ),并写出其截断误差的表达式(设f (x )在插值区间上具有直到五阶连续导数)。

解答: 做差商表

P4(x)=1-2x-3x(x-1)-x(x-1)(x-1)(x-2) R4(x)=f(5)()/5!x(x-1)(x-1)(x-2)(x-2)

3、对下面的线性方程组变化为等价的线性方程组,使之应用雅克比迭代法和高斯——赛德尔迭代法均收敛,写出变化后的线性方程组及雅克比迭代法和高斯——赛德尔迭代法的迭代公式,并简单说明收敛的理由。 解答:

交换第二和第四个方程,使系数矩阵为严格对角占优:

雅克比迭代公式: 《计算机数学基础(2)》数值分析试题 一、单项选择题(每小题3分,共15分)

1. 已知准确值x *与其有t 位有效数字的近似值x =…a n ×10s (a 10)的绝对误差x *-

x ( ).

(A) ×10 s -1-t (B) ×10 s -t (C) ×10s +1-t (D) ×10 s +t

2. 以下矩阵是严格对角占优矩阵的为( ).

(A) ????

?????

???------21001210012100

12,

(B)?

?

???

????

???2100141101410125 (C) ??

???????

???--2100

14121241

0125 (D) ??

???

??

??

???-513

114120141112

4 3. 过(0,1),(2,4),(3,1)点的分段线性插值函数P (x )=( )

??????

?=+-=-+=-+-=+-6

5 8 4 3 3 1 2431432321421x x x x x x x x x x x x

(A) ?????≤<+-≤≤+32103201

23x x x x (B) ?????≤<+-≤≤+32103201232x x x x

(C) ?????≤<+-≤≤-3210320123x x x x (D) ?????≤<+-≤≤+3

24201

23

x x x x

4. 等距二点的求导公式是( )

(A) ???????

-='+-='+++)

(1)()(1)(111k k k k k k y y h x f y y h x f

(B) ???

????

-='-='+++)

(1)()(1)(111k k k k k k y y h x f y y h x f (C) ???

????-='+-='+++)

(1)()(1)(111k k k k k k y y h x f y y h x f (D)

5. 解常微分方程初值问题的平均形式的改进欧拉法公式是 那么y p ,y c 分别为( ).

(A) ???+=+=+)

,()

,(1k k k c k k k p y x hf y y y x hf y y

(B) ?????+=+=+),()

,(1p k k c k k k p y x hf y y y x hf y y

(C) ?????+=+=),(),(p k k c

k k k p y x f y y y x f y y

(D) ?????+=+=+),(),(1p k k c

k k k p y x hf y y y x hf y y

二、填空题(每小题3分,共15分) 6. 设近似值x 1,x 2满足(x 1)=,(x 2)=,那么(x 1x 2)= .

7. 三次样条函数S (x )满足:S (x )在区间[a ,b ]内二阶连续可导,S (x k )=y k (已知),

k =0,1,2,…,n ,且满足S (x )在每个子区间[x k ,x k +1]上是 .

8. 牛顿-科茨求积公式∑?=≈n

k k k b

a

x f A x x f 0

)(d )(,则∑=n

k k A 0

= .

9. 解方程f (x )=0的简单迭代法的迭代函数(x )满足在有根区间内 ,则在有根区间内任意取一点作为初始值,迭代解都收敛.

10. 解常微分方程初值问题的改进欧拉法预报――校正公式是 预报值:),(1k k k k y x hf y y +=+,校正值:y k +1= . 三、计算题(每小题15分,共60分)

11. 用简单迭代法求线性方程组

的X (3).取初始值(0,0,0)T ,计算过程保留4位小数.

12. 已知函数值f (0)=6,f (1)=10,f (3)=46,f (4)=82,f (6)=212,求函数的四阶均

差f (0,1,3,4,6)和二阶均差f (4,1,3).

13.将积分区间8等分,用梯形求积公式计算定积分?+3

12d 1x x ,计算过程保留

4位小数.

14. 用牛顿法求115的近似值,取x =10或11为初始值,计算过程保留4位小数. 四、证明题(本题10分)

15. 证明求常微分方程初值问题

在等距节点a =x 0

y (x k +1)y k +1=y k +2

h

[f (x k ,y k )+f (x k +1,y k +1)]

其中h =x k +1-x k (k =0,1,2,…n -1)

《计算机数学基础(2)》数值分析试题答案

一、单项选择题(每小题3分,共15分)

1. A

2. B

3. A

4. B

5. D 二、填空题(每小题3分,共15分)

6. x 2+x 1

7. 3次多项式

8. b -a 9. (x )r <1 10. y k +)],(),([211+++k k k k y x f y x f h

hf (x k +1, 1+k y ) .

三、计算题(每小题15分,共60分)

11. 写出迭代格式

X (0)=(0,0,0)T . 得到X (1)=,3,3)T 得到X (2)=, 7, 0)T 得到X (3)= 4, 6, 6)T .

12. 计算均差列给出.

f (0,1,3,4,6)=15

f (4, 1, 3)=6

13. f (x )=21x +,h =25.082

=.分点x 0=,x 1=,x 2=,x 3=,x 4=,x 5=,x 6=,x 7=,x 8=.

函数值:f = 2,f = 8,f = 8,f = 6,f = 1,f = 2,f = 6,f = 2,f = 3.

))]()()()()()()((27654321x f x f x f x f x f x f x f +++++++ (9分)

=

2

25

.0×[ 2+ 3+2× 8+ 8+ 6 + 1+ 2+ 6+ 2)]

=× 5+2× 3)= 1

14. 设x 为所求,即求x 2-115=0的正根.f (x )=x 2-115. 因为f (x )=2x ,f (x )=2,f (10)f (10)=(100-115)×2<0,f (11)f (11)=(121-115)×2>0

取x 0=11. 有迭代公式 x k +1=x k -)

()(k k x f x f '=k k k k k x x x x x 2115

221152

+

=--(k =0,1,2,…) x 1=11

2115

211?+= 3

x 2=

3

727.102115

23727.10?+= 8

x 3=

8

723.102115

28723.10?+= 8

x * 8

四、证明题(本题10分)

15. 在子区间[x k +1,x k ]上,对微分方程两边关于x 积分,得

y (x k +1)-y (x k )=?

+1d ))(,(k k

x x x x y x f

用求积梯形公式,有

y (x k +1)-y (x k )=))](,())(,([2

11+++k k k k x y x f x y x f h

将y (x k ),y (x k +1)用y k ,y k +1替代,得到

y (x k +1)y k +1=y k +2

h

[f (x k ,y k )+f (x k +1,y k +1)](k =0,1,2,…,n -1)

数值分析期末试题

一、 填空题(20102=?分)

(1)设????

??????---=283012251

A ,则=∞A ______13_______。

(2)对于方程组???=-=-34101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ???

???05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的

3

1

倍。 (4)求方程)(x f x =根的牛顿迭代公式是)

('1)

(1n n n n n x f x f x x x +--=+。

(5)设1)(3-+=x x x f ,则差商=]3,2,1,0[f 1 。

(6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n

i λ≤≤1max 。

(7)已知?

?

?

???=1021A ,则条件数=∞)(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2--x x 改写为

)1ln(2++-x x 。

(9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。

(10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(313

1

∑==i i x f y 。

二、 (10分)证明:方程组???

??=-+=++=+-1

2112321

321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。

证明:Jacobi 迭代法的迭代矩阵为

J B 的特征多项式为

J B 的特征值为01=λ,i 25.12=λ,i 25.13-=λ,故25.1)(=J B ρ>1,因而迭代

法不收敛性。

三、 (10分)定义内积

试在{}x Span H ,11=中寻求对于x x f =)(的最佳平方逼近元素)(x p 。

解:1)(0≡x ?,x x ≡)(1?,

1),(1

00==

?

dx ??,2

1

),(1

01==

?

xdx ??,3

1),(1

211=

=

?

dx x ??,3

2

),(1

0=

=

?

dx x f ?,5

2),(1

1=

=?

dx x x f ?。 法方程 解得1540=

c ,15

121=c 。所求的最佳平方逼近元素为 x x p 15

12

154)(+=

,10≤≤x 四、 (10分)给定数据表

试用三次多项式以最小二乘法拟合所给数据。 解:332210)(x c x c x c c x y +++=

?????

??

?????????----=84211111000111118421A , ?????

?

??????=

130034003401034010001005A A T 法方程

的解为4086.00=c ,39167.01=c ,0857.02=c ,00833.03=c 得到三次多项式

误差平方和为000194.03=σ 五. (10分) 依据如下函数值表

建立不超过三次的Lagrange 插值多项式,用它计算)2.2(f ,并在假设1)()4(≤x f 下,估计计算误差。 解:先计算插值基函数 所求Lagrange 插值多项式为

12

1

445411)(3)(23)(9)()()()(2332103

03+-+-

=+++==∑=x x x x l x l x l x l x l x f x L i i i 从而0683.25)2.2()2.2(3=≈L f 。

据误差公式))()()((!

4)

()(3210)4(3x x x x x x x x f x R ----=

ξ及假设1)()4(≤x f 得误差估计:

六. (10分) 用矩阵的直接三角分解法解方程组 解 设

由矩阵乘法可求出ij u 和ij l 解下三角方程组

有51=y ,32=y ,63=y ,44=y 。再解上三角方程组 得原方程组的解为11=x ,12=x ,23=x ,24=x 。 七. (10分) 试用Simpson 公式计算积分 的近似值, 并估计截断误差。 解: 截断误差为

八. (10分) 用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求

81

10--<-k

k k x x x 。

解:此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。设 则 x x f 11)('-

=, 21

)(''x

x f = Newton 法迭代公式为

1)

ln 1(112ln 1-+=

-

---

=+k k k k

k k k k x x x x x x x x , ,2,1,0=k 取30=x ,得146193221.34=≈x s 。 九. (10分) 给定数表

求次数不高于5的多项式)(5x H ,使其满足条件 其中,1i x i +-= 3 ,2 ,1 ,0=i 。 解:先建立满足条件

)()(3i x f x p =, 3,2,1,0=i

的三次插值多项式)(3x p 。采用Newton 插值多项式

[][]))((,,)(,)()(1021001003x x x x x x x f x x x x f x f x p --+-+=+

再设 )2)(1()1)(()()(35--+++=x x x x b ax x p x H ,由 得 解得36059-

=a ,360

161

=b 。 故所求的插值多项式

李庆扬数值分析第五版习题复习资料清华大学出版社

第一章 绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= = = 而ln x 的误差为()1 ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -=Q , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈?Q 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,* 57 1.0.x =? 解:* 1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中**** 1234,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ===g g (*)(*)3(*)r p r r V C R R εεε∴≈=g 又(*)1r V ε=Q

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

数值分析-华中科技大学研究生招生信息网

华中科技大学博士研究生入学考试《数值分析》考试大纲 第一部分考试说明 一、考试性质 数值分析考试科目是为招收我校动力机械及工程专业博士研究生而设置的。它的评价标准是高等学校动力机械及工程专业或相近专业优秀硕士毕业生能达到的水平,以保证被录取者具有较好的数值分析理论与应用基础。 二、考试形式与试卷结构 (一) 答卷方式:闭卷,笔试; (二) 答题时间:180分钟; (三) 各部分内容的考查比例(满分为100分) 误差分析约10% 插值法, 函数逼近与计算约30% 数值积分与数值微分约20% 常微分方程数值解法, 方程求根约20% 解线性方程组的直接方法, 解线性方程组的迭代法约20% (四) 题型比例 概念题约10% 证明题约10% 计算题约80% 第二部分考查要点 一、误差分析 1.误差来源 2.误差的基本概念 3.误差分析的若干原则 二、插值法 1. 拉格朗日插值 2. 均差与牛顿插值公式 3. 差分及其性质 4.分段线性插值公式 5.分段三次埃米尔特插值 6.三次样条插值 三、函数逼近与计算 1. 最佳一致逼近多项式 2. 切比雪夫多项式 3. 最佳平方逼近

4. 正交多项式 5. 曲线拟合的最小二乘法 6. 离散富氏变换及其快速算法 四、数值积分与数值微分 1. 牛顿-柯特斯求积公式 2. 龙贝格求积算法 3. 高斯求积公式 4. 数值微分 五、常微分方程数值解法 1. 尤拉方法 2. 龙格-库塔方法 3. 单步法的收敛性和稳步性 4. 线性多步法 5. 方程组与高阶方程的情形 6. 边值问题的数值解法 六、方程求根 1. 牛顿法 2. 弦截法与抛物线法 3. 代数方程求根 七、解线性方程组的直接方法 1. 高斯消去法 2.高斯主元素 3.追赶法 4.向量和矩阵的范数 5.误差分析 八、解线性方程组的迭代法 1. 雅可比迭代法与高斯-塞德尔迭代法 2. 迭代法的收敛性 3. 解线性方程组的松弛迭代法 第三部分考试样题(略)

清华大学高等数值计算(李津)实践题目一(共轭梯度CG法,Lanczos算法与MINRES算法)

高等数值计算实践题目一 1. 实践目的 本次计算实践主要是在掌握共轭梯度法,Lanczos 算法与MINRES 算法的基础上,进一步探讨这3种算法的数值性质,主要研究特征值特征向量对算法收敛性的影响。 2. 实践过程 (一)生成矩阵 (1)作5个100阶对角阵i D 如下: 1D 对角元:1,1,...,20,1+0.1(-20),21,...,100j j d j d j j ==== 2D 对角元:1,1,...,20,1+(-20),21,...,100j j d j d j j ==== 3D 对角元:,1,...,80,81,81,...,100j j d j j d j ==== 4D 对角元:,1,...,40,41,41,...,60,41+(60),61,...,100j j j d j j d j d j j =====-= 5D 对角元:,1,...,100j d j j == 记i D 的最大模特征值和最小模特征值分别为1i λ和i n λ,则i D 特征值分布有如下特点: 1D 的特征值有较多接近于i n λ,并且1/i i n λλ较小, 2D 的特征值有较多接近于i n λ,并且1/i i n λλ较大, 3D 的特征值有较多接近于1i λ,并且1/i i n λλ较大, 4D 的特征值有较多接近于中间模特征值,并且1/i i n λλ较大, 5D 的特征值均匀分布,并且1/i i n λλ较大 (2)随机生成10个100阶矩阵j M : (100(100))j M fix rand = 并作它们的QR 分解,得j Q 和j R ,这样可得50个对称的矩阵T ij j i j A Q DQ =,其中i D 的对角元就是ij A 的特征值,若它们都大于0,则ij A 正定,j Q 的列就是相应的特征向量。结合(1)可知,ij A 都是对称正定阵。

数值分析

华中科技大学 数值分析 姓名祝于高 学号T201389927 班级研究生院(717所) 2014年4月25日

实验4.1 实验目的:复化求积公式计算定积分 试验题目:数值计算下列各式右端定积分的近似值。 (1)3 22 1 ln 2ln 321 dx x -=--?; (2)12 1 41 dx x π=+?; (3) 10 2 3ln 3x dx =?; (4)2 21 x e xe dx =?; 实验要求: (1)若用复化梯形公式、复化Simpson 公式和复化Gauss-Legendre I 型公 式做计算,要求绝对误差限为71 102 ε-=?,分别利用他们的余项对每种算法做出 步长的事前估计。 (2)分别用复化梯形公式、复化Simpson 公式和复化Gauss-Legendre I 型公式做计算。 (3)将计算结果与精确解做比较,并比较各种算法的计算量。

实验内容: 1.公式介绍 (1)复化梯形公式: []110(x )(x )2n n k k k h T f f -+==+∑=1 1(a)2(x )(b)2n k k h f f f -=??++???? ∑; 余项:2'' (f)()12 n b a R h f η-=- ; (2)复化Simpson 公式: 1 1210 (x )4(x )(x )6n n k k k k h S f f f -++=??=++??∑ =11 1201(a)4(x )2(x )(b)6n n k k k k h f f f f --+==??+++???? ∑∑; 余项:4(4) (f)()()1802 n b a h R f η-=- ; (3)复化Gauss-Legendre I 型公式: 112120(x)(x (x 2n b k k a k h f dx f f -++=?? ≈++???? ∑? ; 余项:4 )4(4320 )())(h f b a f R n η-= (; 该余项是这样分析的: 由Gauss 求积公式)()()(0 k b a n k k x f A dx x f x ?∑=≈ρ得: 余项dx x x n f x f A dx x f x f b a n n b a n k k k )()()!22()()()()()(R 12)22(0 G ?? ∑++=+=-=ωρηρ 由于复化G-L 求积公式在每个子区间],[1+k k x x 上用2点G-L 求积公式: )]3 1 22()3122([2)(111111 k k k k k k k k x x k k x x x x f x x x x f x x dx x f k k -+++--+-≈ +++++? + 其余项为:dx x x x x f f R k k x x G 2 1 20)4()()(!4)()(1--=?+η,其中kh a x k +=,h k a x k )1(1++=+。

数值分析第4章答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

第九章矩阵特征值问题的数值方法

第9章矩阵特征值问题的数值 方法 9.1 特征值与特征向量 9.2 Hermite矩阵特征值问题 9.3 Jacobi方法 9.4 对分法 9.5 乘幂法 9.6 反幂法 9.7 QR方法

9.1 特征值与特征向量设A是n阶矩阵,x是非零列向量. 如果有数λ存在,满足, (1) 那么,称x是矩阵A关于特征值λ的特征向量.

如果把(1)式右端写为 ,那么(1)式又可写为: x λ ()0 I A x λ-=||0 I A λ-=即1110 ()||...n n n f I A a a a λλλλλ--=-=++++记 它是关于参数λ的n 次多项式,称为矩阵A 的特 征多项式, 其中a 0=(-1)n |A |. (2)

显然,当λ是A的一个特征值时,它必然 是的根. 反之,如果λ是的根,那么齐次方程组(2)有非零解向量x,使(1)式 成立. 从而,λ是A的一个特征值. A的特征值也称为A的特征根 . ()0 fλ= ()0 fλ=

矩阵特征值和特征向量有如下主要性质: 定理9.1.1 n阶矩阵A是降秩矩阵的充分必要 条件是A有零特征值. 定理9.1.2 设矩阵A与矩阵B相似,那么它们 有相同的特征值. 定理9.1.3 n阶矩阵A与A T有相同的特征值. 定理9.1.4 设λ ≠λj是n阶矩阵A的两个互异特 i 征值,x、y分别是其相应的右特征向 量和左特征向量,那么,x T y=0 .

9.2 Hermite矩阵特征值问题?设A为n阶矩阵,其共轭转置矩阵记为A H. 如果A=A H,那么,A称为Hermite矩阵.

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

华中科技大学《数值计算方法》考试试卷

华中科技大学《数值计算方法》考试试卷 2006~2007学年 第一学期 《计算方法》课程考试试卷(A 卷) (开卷) 院(系)__________专业班级______________学号______________ 姓名__________________ 考试日期: 2007年1月30日 考试时间: 下午 2:30~5:00 一. 填空题 (每小题 4分,共 28份) 1.已知矩阵 ? ?????-=1011A ,则=∞A 。 2. 若用正n 边形的面积作为其外接圆面积的近似值,则该近似值的相对误差是 。 3.三次方程012 3 =+--x x x 的牛顿迭代格式是 。 4.若求解某线性方程组有迭代公式 F BX X n n +=+)()1(,其中 ?? ??????--=33a a a B ,则该迭代公式收敛的充要条件是 。 5.设x xe x f =)(,则满足条件) 2,1,0(22=? ?? ??=?? ? ??i i f i p 的二次插值公式 =)(x p 。 6.已知求积公式) 1()1()2/1()0()1()(10 f f f dx x f ααα+++-≈? 至少具0次 代数精度,则=α 。 7.改进的Euler 方法 )],(),([2 11n n n n n n n f h y t f y t f h y y +++ =++ 应用于初值问题1)0(),()('==y t y t y 的数值解=n y 。 二. (10分) 为数值求得方程022 =--x x 的正根,可建立如下 迭代格式 ,2,1,0, 21=+=-n x x n n , 试利用迭代法的收敛理论证明该迭代序列收敛,且满足 2 lim =∞ →n n x . 解答内容不得超过装订线

清华大学贾仲孝老师高等数值分析报告第二次实验

高等数值分析第二次实验作业

T1.构造例子特征值全部在右半平面时, 观察基本的Arnoldi 方法和GMRES 方法的数值性态, 和相应重新启动算法的收敛性. Answer: (1) 构造特征值均在右半平面的矩阵A : 根据实Schur 分解,构造对角矩阵D 由n 个块形成,每个对角块具有如下形式,对应一对特 征值i i i αβ± i i i i i S αββα-?? = ??? 这样D=diag(S 1,S 2,S 3……S n )矩阵的特征值均分布在右半平面。生成矩阵A=U T AU ,其中U 为 正交阵,则A 矩阵的特征值也均在右半平面。不妨构造A 如下所示: 2211112222 /2/2/2/2N N A n n n n ?-?? ? ? ?- ? = ? ? ? - ? ?? ? 由于选择初值与右端项:x0=zeros(2*N,1);b=ones(2*N,1); 则生成矩阵A 的过程代码如下所示: N=500 %生成A 为2N 阶 A=zeros(2*N); for a=1:N A(2*a-1,2*a-1)=a; A(2*a-1,2*a)=-a; A(2*a,2*a-1)=a; A(2*a,2*a)=a; end U = orth(rand(2*N,2*N)); A1 = U'*A*U; (2) 观察基本的Arnoldi 和GMRES 方法 编写基本的Arnoldi 函数与基本GMRES 函数,具体代码见附录。 function [x,rm,flag]=Arnoldi(A,b,x0,tol,m) function [x,rm,flag]=GMRES(A,b,x0,tol,m) 输入:A 为方程组系数矩阵,b 为右端项,x0为初值,tol 为停机准则,m 为人为限制的最大步数。 输出:x 为方程的解,rm 为残差向量,flag 为解是否收敛的标志。 外程序如下所示: e=1e-6; m=700;

应用数值分析(第四版)课后习题答案第9章

第九章习题解答 1.已知矩阵????? ???????=??????????=4114114114,30103212321A A 试用格希哥林圆盘确定A 的特征值的界。 解:,24)2(, 33)1(≤-≤-λλ 2.设T x x x x ),...,,(321=是矩阵A 属于特征值λ的特征向量,若i x x =∞, 试证明特征值的估计式∑≠=≤-n i j j ij ii a a 1λ. 解:,x Ax λ = ∞∞∞∞≤==x A x x Ax i λλ 由 i x x =∞ 得 i n in i ii i x x a x a x a λ=++++ 11 j n j i i ij i ii x a x a ∑≠==-1)(λ j n j i i ij j n j i i ij i ii x a x a x a ∑∑≠=≠=≤=-11λ ∑∑≠=≠=≤≤-n j i i ij i j n j i i ij ii a x x a a 11λ 3.用幂法求矩阵 ???? ??????=1634310232A 的强特征值和特征向量,迭代初值取T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[2,3,2;10,3,4;3,6,1]; for k=1:100 y=A*z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end

z=y/c if abs(c-d)<0.0001,break; end d=c end 11.0000 =c ,0.7500) 1.0000 0.5000(z 10.9999 =c ,0.7500) 1.0000 0.5000(z 11.0003 =c ,0.7500) 1.0000 0.5000(z 10.9989=c ,0.7500) 1.0000 0.5000(z 11.0040 =c ,0.7498) 1.0000 0.5000(z 10.9859=c ,0.7506) 1.0000 0.5001(z 11.04981 =c ,0.7478) 1.0000 0.4995(z 10.8316 =c ,0.7574) 1.0000 0.5020(z 11.5839 =c ,) 0.7260 1.0000 0.4928 (z 9.4706 =c ,0.8261) 1.0000 0.5280(z 17 = c ,0.5882) 1.0000 0.4118(z 11T (11)10T (10)9T (9)8T (8)7T (7)6T (6)5T (5)4T (4)3T (3)2T (2)1T (1)=========== 强特征值为11,特征向量为T 0.7500) 1.0000 0.5000(。 4.用反幂法求矩阵???? ??????=111132126A 最接近6的特征值和特征向量,迭代初值取 T y )1,1,1()0(=。 解:y=[1,1,1]';z=y;d=0; A=[6,2,1;2,3,1;1,1,1]; for k=1:100 AA=A-6*eye(3); y=AA\z; [c,i]=max(abs(y)); if y(i)<0,c=-c;end z=y/c; if abs(c-d)<0.0001,break; end d=c end d=6+1/c

《数值分析》杨大地-标准答案(第八章)

数值分析第8章 数值积分与数值微分 8.1 填空题 (1)n+1个点的插值型数值积分公式∫f(x)dx b a ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。【注:第1空,见定理8.1】 (2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h 0≈h 2[f (0)+f (h )]+ah 2[f ′(0)?f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。 解:令f(x)=1,x,x 2带入有, { h 2[1+1]+ah 2[0?0]=h h 2[0+h ]+ah 2[1?1]=12 (h 2)h 2[0+h 2]+ah 2[0?2h ]=13 (h 3) //注:x 的导数=1 解之得,a=1/12,此时求积公式至少具有2次代数精度。 ∴ 积分公式为:∫f(x)dx h 0≈h 2[f (0)+f (h )]+h 2 12[f ′(0)?f ′(h)] 令 f(x)= x 3带入求积公式有:h 2 [0 +h 3]+ h 212 [0?3h 2]=14 (h 4),与f(x)= x 4的定积分计算值1 4 (h 4)相等, 所以,此求积公式至少具有3次代数精度。 令f(x)= x 4带入求积公式有,h 2[0+h 4]+h 2 12[0?4h 3]=1 6(h 5),与f(x)= x 5的定积分计算值1 5(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。 8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。 解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。 (1)∫f(x)dx 2h 0≈A 0f (0)+A 1f (h )+A 2f(2h) 解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】 {A 0+A 1+A 2=2h A 1h +A 22h =1 2(2h )2A 1h 2+A 2(2h )2=1 3(2h )3 求解得A 0=13h ,A 1=43h ,A 2=1 3h , ∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+1 3 hf(2h) ∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。 令f(x)= x 3,代入求积公式有:4 3hh 3+1 3h (2h )3=4h 4 ∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=1 4(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

华中科技大学数值分析2016年试卷

华中科技大学研究生课程考试试卷 课程名称: 课程类别 考核形式 学生类别______________考试日期______________学号__________________姓名__________________任课教师___________________ 一、填空 (每题3分,共24分) 1.设0.0013a =, 3.1400b =, 1.001c =都是经过四舍五入得到的近似值,则它们分别有 , , 位有效数字。 2.设(0,1,2,3,4)i x i = 为互异节点,()i l x 为对应的4次Lagrange 插值基函数,则 4 40 (21)()i i i i x x l x =++=∑___________________,4 40 (21)(1)i i i i x x l =++=∑________。 3. 已知3()421f x x x =++, 则[]0,1,2,3f = ,[]0,1,2,3,5f = 。 4.当常数a = , ()1 2 3 1 x ax dx -+?达到极小。 5. 三次Chebyshev 多项式3()T x 在[-1, 1]上3个不同实零点为1x = , 2x = ,3x = ;()()()12311 max x x x x x x x -≤≤---= 。 6.已知一组数据()()() 01,12,25, y y y ===利用最小二乘法得到其拟合直线y ax b =+,则a =_____ ,b =_____。 7. 当0A = ,1A = 时,求积公式 ()()()1011 1 ()1013 f x dx f A f A f -≈ -++? 的代数精度能达到最高,此时求积公式的代数精度为 。 8.已知矩阵1 222A ?? = ?-?? ,则A ∞= ,2A ,()2cond A = 。 二、(10分) 设函数()y f x =, 已知()()()0'01,14f f f ===, (1) 试求过这两点的二次Hermite 插值多项式()2H x ; 研究生 2016-6-1 数值分析

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

清华大学高等数值计算(李津)实践题目二(SVD计算及图像压缩)(包含matlab代码)

第1部分 方法介绍 奇异值分解(SVD )定理: 设m n A R ?∈,则存在正交矩阵m m V R ?∈和n n U R ?∈,使得 T O A V U O O ∑??=?? ?? 其中12(,, ,)r diag σσσ∑=,而且120r σσσ≥≥≥>,(1,2, ,)i i r σ=称为A 的 奇异值,V 的第i 列称为A 的左奇异向量,U 的第i 列称为A 的右奇异向量。 注:不失一般性,可以假设m n ≥,(对于m n <的情况,可以先对A 转置,然后进行SVD 分解,最后对所得的SVD 分解式进行转置,就可以得到原来的SVD 分解式) 方法1:传统的SVD 算法 主要思想: 设()m n A R m n ?∈≥,先将A 二对角化,即构造正交矩阵1U 和1V 使得 110T B n U AV m n ?? =?? -?? 其中1200n n B δγγδ??? ???=?????? 然后,对三角矩阵T T B B =进行带Wilkinson 位移的对称QR 迭代得到:T B P BQ =。 当某个0i γ=时,B 具有形状12B O B O B ?? =? ??? ,此时可以将B 的奇异值问题分解为两个低阶二对角阵的奇异值分解问题;而当某个0i δ=时,可以适当选取'Given s 变换,使得第i 行元素全为零的二对角阵,因此,此时也可以将B 约化为两个低 阶二对角阵的奇异值分解问题。 在实际计算时,当i B δε∞≤或者() 1j j j γεδδ-≤+(这里ε是一个略大于机器精度的正数)时,就将i δ或者i γ视作零,就可以将B 分解为两个低阶二对角阵的奇异值分解问题。

第9章数值分析中的误差

第9章 数值分析中的误差 练习题 1.下列各数中,绝对误差限为0.000 05的有效近似数是( B ) (A)-2.180 (B) 2.1200 (C) -123.000 (D) 2.120 2. 数8.000033的5位有效数字的近似值是多少? 答案:8.000 0 3. 若误差限为0.5×10-5,那么近似数0.003400有( B )位有效数字. (A) 2 (B) 3 (C) 4 (D) 6 4. 若近似值x 的绝对误差限为ε=0.5×10-2,那么以下有4位有效数字的x 值是( B ). (A) 0.934 4 (B) 9.344 (C) 93.44 (D)934.4 5. 已知准确值x *与其有t 位有效数字的近似值x =0.0a 1a 2…a n ×10s (a 1≠0)的绝对误差∣x *-x ∣≤( A ). (A) 0.5×10 s -1-t (B) 0.5×10 s -t (C) 0.5×10s +1-t (D) 0.5×10 s +t 6. 已知x *1=x 1±0.5×10-3,x *2=x 2±0.5×10-2,那么近似值x 1,x 2之差的误差限是多少? 答案:0.55×10-2. 7. 设近似值x =-9.73421的相对误差限是0.0005,则x 至少有几位有效数字. 答案:3 8. 用四舍五入的方法得到近似值x =0.0514,那么x 的绝对误差限和相对误差限各是几? 答案:0.000 05,0.001 9. 设近似值x 1,x 2满足ε(x 1)=0.05,ε(x 2)=0.005,那么ε(x 1+x 2)=? 答案:0.055 10. 设近似值x =±0.a 1a 2…a n ×10m ,具有l 位有效数字,则其相对误差限为( B ). (A) 1110121+-?+l a (B) 1110) 1(21+-?+l a (C) 111021+-?l a (D) l a -?10211 11. 测量长度为x =10m 的正方形,若ε(x )=0.05m ,则该正方形的面积S 的绝对误差限是多少? 答案:1(m) 12.数值x *=2.197224577…的六位有效数字的近似值x =( B ). (A) 2.19723 (B) 2.19722 (C) 2.19720 (D) 2.197225 13. 将下列各数舍入成三位有效数字,并确定近似值的绝对误差和相对误差. (1) 2.1514 (2) -392.85 (3) 0.003922 14. 已知各近似值的相对误差,试确定其绝对误差: (1) 13267 e r =0.1% (2) 0.896 e r =10% 练习题答案 1. B 2. 8.000 0 3. B 4. B . 5. A 6. 0.55×10-2. 7. 3 8. 0.000 05,0.001 9. 0.055 10. B 11. 1(m) 12. B 13. (1)2.15, e =-0.001 4, e r =-0.000 65; (2) -393 , e =-0.15, e r =-0.00038;

相关文档