文档库 最新最全的文档下载
当前位置:文档库 › 2019届理科数学高考中的函数与导数问题

2019届理科数学高考中的函数与导数问题

2019届理科数学高考中的函数与导数问题
2019届理科数学高考中的函数与导数问题

2019届理科数学

高考中的函数与导数问题

一、选择题(每小题5分,共20分)

1.已知函数f(x)(x∈R)满足f(x)=f(2-x),g(x)=-x2-x.若f(x)=g(x)h(x),h(x)为一元二次函数,f(x)的最高次项的系数为-1,则f(x)的极小值点为()

A.x=1

B.x=1+

C.x=1-

D.x=1+或1-

2.已知函数f(x)=x+e-x,若存在x∈R,使得f(x)≤ax成立,则实数a的取值范围是()

A.(-∞,1-e]

B.(1,+∞)

C.(1-e,1]

D.(-∞,1-e]∪(1,+∞)

3.已知函数f(x)的定义域为R,其图象关于直线x=1对称,其导函数为f'(x),当x<1时,2f(x)+(x-

1)f'(x)<0,那么不等式(x+1)2f(x+2)>f(2)的解集为()

A.(-∞,0)

B.(-∞,-2)

C.(-2,0)

D.(-∞,-2)∪(0,+∞)

4.若函数f(x)=m-x2+2ln x在[,e]上有两个不同的零点,则实数m的取值范围为()

A.(1,e2-2]

B.[4+,e2-2]

C.(1,4+]

D.[1,+∞)

二、填空题(每小题5分,共10分)

5.已知函数f(x)=e x+2x2-4x(e为自然对数的底数),则函数f(x)的图象在x=1处的切线方程是.

6.已知函数f(x)=ln(x+1)-2的图象的一条切线为y=ax+b,则的最小值是.

三、解答题(共48分)

7.(12分)已知f(x)=x2-2ax+ln x.

(1)当a=1时,求f(x)的单调性;

(2)若f'(x)为f(x)的导函数, f(x)有两个不相等的极值点x1,x2(x1

8.(12分)已知函数f(x)=(x>0,a∈R).

(1)讨论函数f(x)的零点的个数;

(2)若函数g(x)=e x-ln x+2x2+1,且对于任意的x∈(0,+∞),总有xf(x)≤g(x)成立,求实数a的最大值.

9.(12分)已知函数f(x)=a ln x-x+2,a∈R.

(1)若函数f(x)有极值点,求a的取值范围;

(2)若对任意的x1∈[1,e],总存在x2∈[1,e],使得f(x1)+f(x2)=4,求实数a的值.

10.(12分)已知函数f(x)=e1-x,g(x)=x2+ax-a(a∈R)(e为自然对数的底数).

(1)求证:当a≥-2且x<1时,f(x)>g(x);

(2)判断“a≤-4”是“φ(x)=f(x)·g(x)存在最小值”的什么条件,并予以证明.

答案

1.A解法一由题易知0,-1为方程g(x)=0的根,则0,-1为函数f(x)的零点.由于f(x)=f(2-x),即函数f(x)的图象关于直线x=1对称,则2,3也为函数f(x)的零点,所以f(x)=-(x+1)x(x-2)(x-3)=

-[x(x-2)][(x+1)(x-3)]=-(x2-2x)(x2-2x-3),f'(x)=-(2x-2)(x2-2x-3)-(x2-2x)(2x-2)=-4(x-1)(x2-2x-)=

-4(x-1)(x-1+)(x-1-),令f'(x)>0,得x<1-或1

x>1+,所以x=1为函数f(x)的极小值点,故选A.

解法二由题易知0,-1为方程g(x)=0的根,则0,-1为函数f(x)的零点.由于f(x)=f(2-x),即函数f(x)的图象关于直线x=1对称,则2,3也为函数f(x)的零点,所以f(x)=-(x+1)x(x-2)(x-3).把函数f(x)的图象向左平移1个单位长度得到的图象对应的函数为m(x)=f(x+1)=-(x+2)(x+1)(x-1)(x-2)=

-(x2-1)(x2-4)=-(x4-5x2+4),m'(x)=-4x(x2-)=-4x(x-)(x+),令m'(x)>0,则x<-或0,所以x=0为函数m(x)的极小值点,则x=1为函数f(x)的极小值点,故选A.

2.D解法一可以考虑研究问题“对任意的x∈R,f(x)>ax恒成立”,即x+>ax在R上恒成立.

①当x=0时,该不等式显然成立;

②当x>0时,a<1+恒成立,设g(x)=1+,显然g(x)在(0,+∞)上单调递减,且当x→+∞

时,g(x)→1,∴a≤1;

③当x<0时,a>1+恒成立,由②知g'(x)=-,当x∈(-∞,-1)时,g'(x)>0,g(x)单调递增,当x∈

(-1,0)时,g'(x)<0,g(x)单调递减,∴当x=-1时,g(x)有最大值,最大值为1-e,∴a>1-e,∴1-e

∴实数a的取值范围为(-∞,1-e]∪(1,+∞).故选D.

解法二利用导数工具研究函数f(x)的性质,得到函数f(x)的图象如图D 1-1所示.

图D 1-1

设直线y=kx与f(x)的图象相切,

切点为(x0,x0+-),∴k=1--,

∴切线方程为y=(1--)(x-x0)+x0+-=(1--)x+(x0+1)-,

∴(x0+1)-=0,x0=-1,∴k=1--=1-e.

又当x0→+∞时,k→1,∴直线y=x为f(x)图象的渐近线.

数形结合知,实数a的取值范围为(-∞,1-e]∪(1,+∞).故选D.

3.C由已知2f(x)+(x-1)f'(x)<0可构造函数φ(x)=(x-1)2f(x),则φ'(x)=2(x-1)f(x)+(x-1)2f

'(x)=(x-1)[2f(x)+(x-1)f'(x)],当x<1时,φ'(x)>0,所以φ(x)在区间(-∞,1)上为增函数.点P(x0,y0)关于直线x=1的对称点P'(2-x0,y0),由于函数f(x)的图象关于直线x=1对称,则f(x0)=f(2-x0),而

φ(2-x0)=(2-x0-1)2f(2-x0)=(x0-1)2f(x0)=φ(x0),所以,函数φ(x)的图象也关于直线x=1对称,所以φ(x)在区间(1,+∞)上为减函数.不等式(x+1)2f(x+2)>f(2)可化为φ(x+2)>φ(2),所以|x+2-1|<1,得

-2

4.C令f(x)=m-x2+2ln x=0,则m=x2-2ln x.令g(x)=x2-2ln x,则g'(x)=2x-=(-)(),∴g(x)在区间[,1]上单调递减,在区间(1,e]上单调递增,

∴g(x)min=g(1)=1,又g()=4+,g(e)=e2-2,4+<5,e2-2>2.72-2>5,∴g()

5.e x-y-2=0f'(x)=e x+4x-4,∴切线的斜率k=f'(1)=e,当x=1时,f(1)=e+2-4=e-2,∴函数f(x)的图象在x=1处的切线方程是y-(e-2)=e(x-1)=e x-e,即e x-y-2=0.

6.1-e2切线y=ax+b在x轴上的截距是-,欲求的最小值,只需求切线y=ax+b在x轴上的截距的最大值.因为f'(x)=>0,所以f(x)在(-1,+∞)上是增函数,零点是x=e2-1.如图D 1-2,作出函数f(x)的大致图象,结合图象可知f(x)的图象在点(e2-1,0)处的切线在x轴上的截距最大,最大值为e2-1.因此,的最小值是1-e2.

图D 1-2

7.(1)当a=1时,f(x)=x2-2x+ln x(x>0),

f'(x)=2x-2+=-=(-)>0.(2分) 所以f(x)在区间(0,+∞)上单调递增.(3分) (2)f'(x)=2x-2a+=-,

由题意得,x1和x2是方程2x2-2ax+1=0的两个不相等的正实数根,所以

,

,

解得a>,

-,

2ax1=2+1,2ax2=2+1, (6分) 由于>,所以x1∈(0,),x2∈(,+∞).(7分) 2f(x1)-f(x2)=2(-2ax1+ln x1)-(-2ax2+ln x2)

=2--4ax1+2ax2-ln x2+2ln x1

=-2+-ln-1

=-+-ln 4-1

=-+-ln -2ln 2-1.(9分) 令t=(t>),g(t)=-+t-ln t-2ln 2-1,则

g'(t)=+1-=-=(-)(-),

1时,g'(t)>0,

所以y=g(t)在区间(,1)上单调递减,在区间(1,+∞)上单调递增, (11分) g(t)min=g(1)=-,

所以2f(x1)-f(x2)的最小值为-.(12分) 8.(1)令f(x)=0,即x2+ax+1=0.

设h(x)=x2+ax+1, 对于方程x2+ax+1=0,Δ=a2-4.

①当Δ=a2-4<0,即-20在区间(0,+∞)上恒成立,

所以当-20在(0,+∞)上恒成立,

所以当a=2时,函数f(x)没有零点; (2分) ③当a=-2时,h(x)=x2-2x+1=(x-1)2,由h(x)=0,得x=1,

所以当a=-2时,函数f(x)有一个零点; (3分) ④当Δ=a2-4>0,即a<-2或a>2时,方程h(x)=0有两个不等实根,

设方程h(x)=0的两个不等实根分别为x1,x2,且x1

(i)当a<-2时,x1+x2=-a>0,x1x2=1>0,故x2>x1>0,

所以当a<-2时,函数f(x)有两个零点; (4分) (ii)当a>2时,x1+x2=-a<0,x1x2=1>0,故x1<0,x2<0,

因为函数f(x)的定义域为(0,+∞),

所以当a>2时,函数f(x)没有零点.(5分) 综上,当a>-2时,函数f(x)没有零点; 当a=-2时,函数f(x)有一个零点;当a<-2时,函数f(x)有两个零点.(6分)

(2)由题意知,对于任意的x ∈(0,+∞),总有x ·

≤e x -ln x+2x 2+1成立,等价于对于任意的x ∈

(0,+∞),总有a ≤ -

+x 成立,等价于a ≤(

-

+x )min (x>0).

(7分)

设φ(x )=

-

+x (x>0),

则φ'(x )=

( -

) -( - )

+1=

( - ) ( )( - )

,

因为x>0,所以当x ∈(0,1)时,φ'(x )<0,所以φ(x )在区间(0,1)上单调递减; (9分) 当x ∈(1,+∞)时,φ'(x )>0,所以φ(x )在区间(1,+∞)上单调递增. (10分) 所以φ(x )min =φ(1)=e +1,所以a ≤e +1. (11分) 所以实数a 的最大值为e +1.

(12分)

9.(1)因为f (x )=a ln x-x+2,x>0,所以f '(x )=

-1= -

,x>0,

当a ≤0时,任意的x ∈(0,+∞),f '(x )<0,所以f (x )在区间(0,+∞)上单调递减,此时无极值点; (1分)

当a>0时,令f '(x )=0,得x=a.

因为x ∈(0,a )时,f '(x )>0,x ∈(a ,+∞)时,f '(x )<0,

所以f (x )的单调递增区间为(0,a ),单调递减区间为(a ,+∞),此时函数f (x )有极大值点. (3分) 综上可知,实数a 的取值范围是(0,+∞).

(4分)

(2)①当a ≤1时,由(1)知,在[1,e]上,f (x )是减函数,所以f (x )max =f (1)=1. 因为对于任意的x 1∈[1,e],x 2∈[1,e],f (x 1)+f (x 2)≤2f (1)=2<4, 所以对于任意的x 1∈[1,e],不存在x 2∈[1,e],使得f (x 1)+f (x 2)=4.

(6分)

②当1

所以f (x )max =f (a )=a ln a-a+2.

因为对于任意的x 1∈[1,e],x 2∈[1,e],f (x 1)+f (x 2)≤2f (a )=2a (ln a-1)+4, 又1

所以对于任意的x 1∈[1,e],不存在x 2∈[1,e],使得f (x 1)+f (x 2)=4.

(8分)

③解法一 当a ≥e 时,由(1)知,在[1,e]上,f (x )是增函数,f (x )min =f (1)=1,f (x )max =f (e),

由题意,对任意的x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)+f (x 2)=4, 则当x 1=1时,要使存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则f (1)+f (e)≥4,

同理当x 1=e 时,要使存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则f (e)+f (1)≤4,所以f (1)+f (e)=4. (10分) 对任意的x 1∈(1,e),令g (x )=4-f (x )-f (x 1),x ∈[1,e],g (x )=0有解. g (1)=4-f (1)-f (x 1)=f (e)-f (x 1)>0,g (e)=4-f (e)-f (x 1)=f (1)-f (x 1)<0, 所以存在x 2∈(1,e),使得g (x 2)=4-f (x 2)-f (x 1)=0,即f (x 1)+f (x 2)=4, 所以由f (1)+f (e)=a-e +3=4,得a=e +1. 综上可知,实数a 的值为e +1.

(12分)

解法二 当a ≥e 时,由(1)知,在[1,e]上,f (x )是增函数,f (x )min =f (1)=1,f (x )max =f (e),由题意,对任意的x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则 ( ) - ( ), ( ) - ( ),所以f (1)+f (e)=a-e +3=4,得

a=e +1.

综上可知,实数a的值为e+1.(12分) 10.(1)当a≥-2且x<1时,设h(x)=f(x)-g(x)=e1-x-x2-ax+a,

则h'(x)=-e1-x-2x-a,

设p(x)=-e1-x-2x-a(a≥-2且x<1),

则p'(x)=e1-x-2,

令p'(x)≥0,得x≤1-ln 2,令p'(x)<0,得1-ln 2

∴p(x)在区间(-∞,1-ln 2)上是增函数,在区间(1-ln 2,1)上是减函数.

∴当a≥-2时,p(x)≤p(1-ln 2)=2ln 2-4-a≤2ln 2-4+2=2(ln 2-1)<0,

∴当x<1时,h'(x)<0,即h(x)在区间(-∞,1)上是减函数.(4分) 又h(1)=0,

∴当x<1时,h(x)>0,即f(x)>g(x).

故当a≥-2且x<1时,f(x)>g(x).(5分) (2)“a≤-4”是“φ(x)=f(x)·g(x)存在最小值”的充分不必要条件.

下面给予证明:

设φ(x)=f(x)·g(x)=(x2+ax-a)e1-x,

则φ'(x)=-(x+a)(x-2)e1-x.(6分) (i)若a≤-4,令φ'(x)>0,得2-a,

∴φ(x)在区间(-∞,2)上是减函数,在区间(2,-a)上是增函数,在区间(-a,+∞)上是减函数,

∴φ(x)的极小值φ(2)=(a+4)e-1≤0,

当x≥-a时,x2+ax-a≥(-a)2-a2-a=-a≥4,

φ(x)≥4e1-x>0,

∴当a≤-4时,φ(x)有最小值,最小值为φ(2)=,

∴“a≤-4”是“φ(x)=f(x)·g(x)存在最小值”的充分条件.(9分) (ii)注意到当a=0时,φ(x)=x2e1-x,φ'(x)=x(2-x)e1-x,

令φ'(x)>0,得02,

∴φ(x)在区间(-∞,0)上是减函数,在区间(0,2)上是增函数,在区间(2,+∞)上是减函数,

∴当x=0时,φ(x)有极小值φ(0)=0.

又当x>2时,φ(x)=x2e1-x>0,

∴φ(x)有最小值0.

∴当φ(x)有最小值时,a可以为0.

∴“a≤-4”不是“φ(x)=f(x)·g(x)存在最小值”的必要条件.(11分) 综上,“a≤-4”是“φ(x)=f(x)·g(x)存在最小值”的充分不必要条件. (12分)

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

高三数学精品教案:专题1:函数专题(理科)

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关

高考数学函数与导数相结合压轴题精选(含具体解答)

函数与导数相结合压轴题精选(二) 11、已知)0()(2 3 >+++=a d cx bx ax x f 为连续、可导函数,如果)(x f 既有极大值M ,又有极小值N ,求证:.N M > 证明:由题设有),)((323)(212 x x x x a c bx ax x f --=++='不仿设21x x <, 则由时当时当时当知),(,0)(),(,0)(),(:02211+∞∈<'∈>'-∞∈>x x x f x x x x f x x a 1)(,0)(x x f x f 在故>'处取极大值,在x 2处取极小值, )()()()()(212 221323121x x c x x b x x a x f x f -+-+-=- ])()()[(212122121c x x b x ax x x a x x +++-+-= )] 3(92 )[(]3232)32()[(22121ac b a x x c a b b a c a a b a x x ---=+-?+?-- ?-= 由方程0232 =++c bx ax 有两个相异根,有,0)3(412)2(2 2>-=-=?ac b ac b 又)()(,0)()(,0,0212121x f x f x f x f a x x >>-∴><-即,得证. 12、已知函数ax x x f +-=3 )(在(0,1)上是增函数. (1)求实数a 的取值集合A ; (2)当a 取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+,且b b a )(1,0(1=为常 数),试比较n n a a 与1+的大小; (3)在(2)的条件下,问是否存在正实数C ,使20<-+< c a c a n n 对一切N n ∈恒成立? (1)设))(()()(,102 2212 1122121a x x x x x x x f x f x x -++-=-<<<则 由题意知:0)()(21<-x f x f ,且012>-x x )3,0(,2 22121222121∈++<++∴x x x x a x x x x 则 }3|{,3≥=≥∴a a A a 即 (4分) (注:法2:)1,0(,03)(2 ∈>+-='x a x x f 对恒成立,求出3≥a ). (2)当3时,由题意:)1,0(,2 3 21131∈=+- =+b a a a a n n n 且

高考数学函数与导数复习指导

2019高考数学函数与导数复习指导 函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中,函数类试题在试题中所占分值一般为22---35分。一般为2个选择题或2个填空题,1个解答题,而且常考常新。 在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。 在解答题中通常考查函数与导数、不等式的综合运用。其主要表现在: 1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。 2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。 3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。 4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。 5.涌现了一些函数新题型。 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素 养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练

工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 8.求极值,函数单调性,应用题,与三角函数或向量结合。

2011年高考理科数学函数、导函数试题汇编

2011年高考理科数学函数、导函数试题汇编 一、选择题: 1. 【2011安徽理】(3)设)(x f 是定义在R 上的奇函数,当0≤x 时,x x x f -=22)(,则=)1(f (A)-3 (B)-1 (C) 1 (D)3 2.【2011安徽理】(10)函数n m x ax x f )1()(-=在区间[0,1]上的图像如图所示,则m,n 的值可能是 (A) m=1,n=1 (B) m=1,n=2 (C) m=2,n=1 (D) m=3,n=1 3. 【2011北京理】6.根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ??? ??? ?≥<=A x A c A x x c x f ,, ,)((A ,C 为常数)。已知工人组装第4件产品用时30分钟,组装第A 件 产品用时15分钟,那么C 和A 的值分别是 A .75,25 B .75,16 C .60,25 D .60,16 4.【2011广东理】4. 设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列 结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数 5.【2011湖北理】6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()222f x g x a a -+=-+(a >0,且0a ≠).若()2g a =,则()2f = A .2 B . 15 4 C . 17 4 D .2 a

6.【2011湖南理】8.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( ) A .1 B . 12 C D 7.【2011江西理】3 .若()f x = ,则()f x 的定义域为 A .(,)1-02 B .(,]1-02 C .(,)1 - +∞2 D .(,)0+∞ 8.【2011江西理】4.若()ln f x x x x 2=-2-4,则'()f x >0的解集为 A .(,)0+∞ B .-+10?2∞(,)(,) C .(,)2+∞ D .(,)-10 9.【2011辽宁理】9.设函数? ??>-≤=-1,log 11 ,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是 A .1[-,2] B .[0,2] C .[1,+∞] D .[0,+∞] 10.【2011辽宁理】11.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 A .(1-,1) B .(1-,+∞) C .(∞-,1-) D .(∞-,+∞) 11.【2011全国理】2 .函数0)y x =≥的反函数为 A .2()4x y x R =∈ B .2 (0)4 x y x =≥ C .24y x =()x R ∈ D .24(0)y x x =≥ 12. 【2011全国理】9.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则 5()2f -= A .-1 2 B .1 4 - C . 14 D . 12

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

高考理科数学常用公式大全

高考理科常用数学公式总结 1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 2.U U A B A A B B A B C B C A =?=????U A C B ?=ΦU C A B R ?= 3.()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠. 5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?[]1212()() 0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称 ()()f a x f a x ?+=-(2)()f a x f x ?-=.②函数()y f x =的图象关于直线 2 a b x +=对称()()f a mx f b mx ?+=-()()f a b mx f mx ?+-=. 7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线 0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线 2a b x m +=对称.③函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称. 8.分数指数幂 m n a =(0,,a m n N *>∈,且1n >). 1 m n m n a a -=(0,,a m n N *>∈,且1n >). 9. log (0,1,0)b a N b a N a a N =?=>≠>. 10.对数的换底公式 log log log m a m N N a =.推论 log log m n a a n b b m =. 11.11, 1,2 n n n s n a s s n -=?=?-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++). 12.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈; 其前n 项和公式 1()2n n n a a s += 1(1)2n n na d -=+211 ()22 d n a d n =+-. 13.等比数列的通项公式1*11()n n n a a a q q n N q -==?∈;

高三数学-理科函数与导数-专题练习(含答案与解析)

(Ⅰ)当(0,1)x ∈时,求()f x 的单调性; (Ⅱ)若2()()()h x x x f x =-?,且方程()h x m =有两个不相等的实数根1x ,2x .求证:121x x +>.

联立212y x y x ax =-??'=-+-? 消去y 得:2(1)10x a x +-+=, 由题意得:2(1)40a -=-=△, 解得:3a =或1-; (Ⅱ)由(1)得:l 1(n )x f x =+', 1(0,)e x ∈时,)0(f x '<,()f x 递减, 1(,)e x ∈+∞时,)0(f x '>,()f x 递增, ①1104e t t <<+≤,即110e 4 t <≤-时, min 111)ln )444 ()()((f x f t t t ==+++, ②110e 4t t <<<+,即111e 4e t -<<时, min e ()1e )(1f x f -==; ③11e 4t t ≤<+,即1e t ≥时,()f x 在[1,4]t t +递增, min ())ln (f x f t t t ==; 综上,min 1111)ln ),044e 41111,e e 4e 1l (e (,()n f x t t t t t t t ++<≤--???-<<≥?=?????; 因此(0,)x ∈+∞时,min max 1()()e f x m x ≥-≥恒成立, 又两次最值不能同时取到, 故对任意(0,)x ∈+∞,都有2ln e e x x x x >-成立.

∴()0g x '>, ∴函数()g x 在定义域内为增函数, ∴(1)(0)g g >,即12 e (1)(0) f f >,亦即(1) f > 故选:A . 2.解析:∵()1cos 0f x x '=+≥, ∴()sin f x x x =+在实数R 上为增函数, 又∵()sin ()f x x x f x -=--=-, ∴()sin f x x x =+为奇函数, ∴2222222222(23)(41)0(23)(41) (23)(41)2341(2)(1)1f y y f x x f y y f x x f y y f x x y y x x x y -++-+≤?-+≤--+?-+≤-+-?-+≤-+-?-+-≤, 由22(2)(1)11x y y ?-+-≤?≥? 可知,该不等式组所表示的区域为以点(2,1)C 为圆心,1为半径的上半个圆,1 y x +表示的几何意义为点(,)P x y 与点(1,0)M -连接的斜率,作出半圆与点P 连线,数形结合可得1 y x +的取值范围为13,44?????? . 3.解析:依题意,可得右图:()2f x =

全国高考理科数学试题分类汇编:函数

2013年全国高考理科数学试题分类汇编2:函数 一、选择题 1 .(2013年高考江西卷(理))函数 的定义域为 A.(0,1) B.[0,1) C.(0,1] D.[0,1] 【答案】D 2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若 a b c <<,则函数 ()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( ) A.(),a b 和(),b c 内 B.(),a -∞和(),a b 内 C.(),b c 和(),c +∞内 D.(),a -∞和(),c +∞内 【答案】A 3 .(2013年上海市春季高考数学试卷(含答案))函数 1 2 ()f x x - =的大致图像是( ) 【答案】A 4 .(2013年高考四川卷(理)) 设函数 ()f x =(a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( ) (A)[1,]e (B)1 [,-11]e -, (C)[1,1]e + (D)1 [-1,1]e e -+ 【答案】A 5 .(2013年高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ?-+≤?+>? ,若|()f x |≥ax ,则a 的取值范围是 A.(,0]-∞ B.(,1]-∞ C.[2,1]- D.[2,0]- 【答案】D 6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数 ()()21=log 10f x x x ?? +> ??? 的反函数()1=f x -

2018年全国卷理科数学十年真题分类汇编 导数

导数 一.基础题组 1. 【2010新课标,理3】曲线y = 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 【答案】A 2. 【2008全国1,理6】若函数的图像与函数的图像关于直线 对称,则( ) A . B . C . D . 【答案】B. 【解析】由. 3. 【2012全国,理21】已知函数f (x )满足f (x )=f ′(1)e x -1 -f (0)x + x 2 . (1)求f (x )的解析式及单调区间; (2)若f (x )≥ x 2 +ax +b ,求(a +1)b 的最大值. 【解析】(1)由已知得f ′(x )=f ′(1)e x -1 -f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1 ,所以f ′(1)=e. 从而f (x )=e x -x + x 2 . 2 x + x (1)y f x = -1y =y x =()f x =21 x e -2x e 21 x e +22 x e +() ()()()212121,1,y x x y x e f x e f x e --=?=-==12 12 12

由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .① (ⅰ)若a +1<0,则对任意常数b ,当x <0,且时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0. 所以f (x )≥ x 2 +ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2 -(a +1)2 ln(a +1). 设h (a )=(a +1)2 -(a +1)2 ln(a +1), 则h ′(a )=(a +1)(1-2ln(a +1)). 所以h (a )在(-1,)上单调递增,在(,+∞)上单调递减, 故h (a )在处取得最大值. 从而,即(a +1)b ≤. 当,时,②式成立, 11 b x a -< +12 12 e 1-12 e 1-12 =e 1a -e ()2h a ≤ e 2 1 2 =e 1a -12 e 2 b =

高考文科数学函数专题讲解及高考真题精选(含答案) (1)

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:

近5年高考数学全国卷23试卷分析报告

2013----2017年高考全国卷2、3试卷分析从2012年云南进入新课标高考至今,已有六年时间,数学因为容易拉分,加上难度变幻不定,可以说是我省考生最为害怕的一个学科,第一天下午开考的数学考得如何直接决定着考生第二天的考试情绪。近5年全国卷数学试题从试卷的结构和试卷的难度上逐渐趋于平稳,稳中有新,难度都属于较为稳定的状态。选择、填空题会以基础题呈现,属于中等难度。选择题在前六题的位置,填空题在前二题的位置;解答题属于中等难度,且基本定位在前三题和最后一题的位置。 一、近五年高考数学考点分布统计表:

从近五年数学试题知识点分布及分值分布统计表不难看出,试题坚持对基础知识、数学思想方法进行考查,重点考查了高中数学的主体内容,兼顾考查新课标的新增内容,在此基础上,突出了对考生数学思维能力和数学应用意识的考查,体现了新课程改革的理念。具体

来说几个方面: 1.整体稳定,覆盖面广 高考数学全国卷2、3全面考查了新课标考试说明中各部分的内容,可以说教材中各章的内容都有所涉及,如复数、旋转体、简易逻辑、概率等教学课时较少的内容,在试卷中也都有所考查。有些内容这几年轮换考查,如统计图、线性回归、直线与圆、线性规划,理科的计数原理、二项式定理、正态分布、条件概率等。 2.重视基础,难度适中 试题以考查高中基础知识为主线,在基础中考查能力。理科前8道选择题都是考查基本概念和公式的题型,相当于课本习题的变式题型。填空题前三题的难度相对较低,均属常规题型。解答题的前三道题分别考查解三角形,分布列、数学期望,空间线面位置关系等基础知识,利用空间直角坐标系求二面角,属中低档难度题。 4.全面考查新增内容,体现新课改理念 如定积分、函数的零点、三视图、算法框图、直方图与茎叶图、条件概率、几何概型、全称命题与特称命题等。 5.突出通性通法、理性思维和思想方法的考查 数学思想方法是对数学知识的最高层次的概括与提炼,是适用于中学数学全部内容的通法,是高考考查的核心。数形结合的思想、方程的思想、分类讨论的思想等在高考中每年都会考查。尤其数形结合,每年还专门有一道“新函数”的大致图象问题 6.注重数学的应用和创新

绝对精选!高考数学函数最后一题练习+答案

精华练习答案 函数三性,两域部分 1、【06江苏1】已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a = (A ) (A )0 (B )1 (C )-1 (D )±1 2、【08全国II 9】. 设奇函数)(x f 在),0(+∞上为增函数,且0)1(=f ,则不等式 0) ()(<--x x f x f 的解集为(D ) (A) ),1()0,1(+∞?- (B) )1,0()1,(?--∞ (C) ),1()1,(+∞?--∞ (D) )1,0()0,1(?- 3、【06北京理5】已知(31)4,1 ()log ,1 a a x a x f x x x -+0)的单调递增区间是)∞+???,1e . 解析:用求导法:.10ln 0)(1ln 1ln )('' e x x x f x x x x x f ≥?≥≥=? +=,,令+ 5、【05江苏15】 答案:?? ? ?????????- 1,430,41 6、【08上海理8】:设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是()()+∞?-,10,1 7、【08广东理19】设A ∈R ,函数 试讨论函数F(x)的单调性. 【解析】1 ,1,1()(),1, kx x x F x f x kx kx x ?-

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x 为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x +- =2 2 ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数21 1log (2),1,()2,1, x x x f x x -+-

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

相关文档
相关文档 最新文档