文档库 最新最全的文档下载
当前位置:文档库 › 广义相对论课程教学大纲

广义相对论课程教学大纲

广义相对论课程教学大纲
广义相对论课程教学大纲

广义相对论课程教学大纲

一、课程说明

(一)课程名称、所属专业、课程性质、学分;

课程名称:广义相对论

所属专业:理论物理专业

课程性质:专业方向必修课

学分:3

(二)课程简介、目标与任务;‘

Einstein在1915年创建的广义相对论是关于时间—空间的性质与物质及其运动相互依赖关系的学说,是建立在广义协变性要求,等效原理和黎曼几何基础上的引力理论和宏观物质运动理论。广义相对论就其创造性和理论的深刻程度来说,都是非凡的和令人惊奇的,这一理论不仅对牛顿力学的核心内容(牛顿方程和万有引力)给予了统一和深刻的解释,还预言了许多牛顿力学所不能解释的新物理效应,并为以后的天文观测和实验所验证。本课程主要介绍广义相对论的数学基础、基本概念和基础知识以及广义相对论的经典实验验证。通过课程的学习使学生深入了解和掌握广义相对论的知识,为进一步深造打下扎实的基础,并能够应用到研究工作中。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;

先修课程包括:理论力学、电动力学。先修课程是该课程的理论基础。

(四)教材与主要参考书。

教材:

广义相对论讲义,段一士

主要参考书:

1.《广义相对论》,刘辽,高等教育出版社

2.《微分几何入门与广义相对论》,梁灿彬,科学出版社

3.《Gravitation》,C.W.Misner, K.S.Thorne, J.A.Wheeler,W.H.Freeman and

company

4.《General Relativity》,Robert M.Wald, The University of Chicago Press

二、课程内容与安排

第一章引言(2学时)

1.1 相对论发展简史

1.2 广义相对论基本原理

第二章黎曼几何(12学时)

2.1 张量

2.2 协变微商

2.3 曲率张量与挠率

2.4 黎曼流形、度规和黎曼联络

2.5 黎曼曲率张量

2.6 利奇(Ricci)张量、标曲率和爱因斯坦张量

2.7 黎曼曲率张量与拓扑

2.8 微分形式与外积

2.9 不变体积元和广义高斯积分定理

第三章爱因斯坦引力场方程(15学时)

3.1 广义相对论基本原理

3.2 “短程线”方程与矢量的平行移动

3.4 度规的弱引力场和低速近似与牛顿第二定律

3.5 爱因斯坦引力场方程

3.6 爱因斯坦引力场方程的作用量、Palatini公式

3.7 广义相对论中的坐标条件

第四章引力场方程的中心球对称解与新引力效应(18学时)

4.1 引力场方程的中心球对称解

4.2 行星轨道进动

4.3 光线在恒星附近的偏折

4.4 雷达回波的延迟

4.5 固有时与引力频移

4.6 恒星演化与黑洞

4.7 致密星

4.8 黑洞

第五章现代宇宙学简介(7学时)

5.1 Robertson-Walker度规

5.2 R-W度规和宇宙基本特征

5.3 现代宇宙论的动力学

5.4 膨胀宇宙的热力学

(一)教学方法与学时分配

该课程教学方法为课堂讲授。学时分配如下:

第一章引言(2学时)

第二章黎曼几何(12学时)

第三章爱因斯坦引力场方程(15学时)

第四章引力场方程的中心球对称解与新引力效应(18学时)

第五章现代宇宙学简介(7学时)

(二)内容及基本要求

主要内容:张量,协变微商,曲率,挠率,度规张量,微分形式,不变体元,广义相对论基本原理,短程线方程,牛顿近似,爱因斯坦引力场方程及其作用量,中心球对称解,新引力效应,恒星演化,黑洞热力学,现代宇宙学

【重点掌握】:短程线方程,爱因斯坦引力场方程及其作用量

【掌握】:张量,协变微商,曲率,挠率,度规张量,牛顿近似,微分形式,不变体元

【了解】:广义相对论基本原理,中心球对称解,新引力效应

【一般了解】:恒星演化,黑洞热力学,现代宇宙学

【难点】:爱因斯坦引力场方程及其作用量

制定人:杨捷

审定人:

批准人:

日期:

广义相对论基础

广义相对论基础 Introduction to General Relativity 课程编号:S070200J15 课程属性:学科基础课学时/学分:60/3 预修课程:大学理论物理、高等数学 教学目的和要求: 本课程为物理学、天文学研究生的学科基础课,同时也是为今后有可能接触到引力理论的其它学科研究生的学科基础课。主要介绍爱因斯坦的广义相对论。使学生具有在今后接触到引力场问题时,能通过阅读有关书籍文献对更深入的问题进行了解的能力。本课强调弄清物理和几何图像。本课不涉及引力场量子化、引力和其它作用之统一以及以抽象数学工具表现时空几何等问题。本课也扼要对广义相对论的观测和实验检验,黑洞问题和宇宙学问题进行简要地介绍。 内容提要: 第一章张量分析基础 张量代数,联络,协变微商,测地线方程,Killing矢量。 第二章引力场方程 引力与度规,引力红移,黎曼曲率张量,Bianchi恒等式,引力场方程。 第三章场方程的应用(Ⅰ) 西瓦兹解,西瓦兹场中质点的运动,光线偏折,引力透镜效应,雷达回波,0Kruskal坐标和黑洞,Keer度规。 第四章场方程的应用(Ⅱ) 宇宙学原理,共动坐标系,Robertson-Walker度规,宇宙学红移,标准宇宙学模型简介。 主要参考书: 1. R, Adler, M.Bagin,M.Schiffer,Introduction to General Relativity(第二版),McGraw-Hill Book Company,New York,1975. 2. 俞允强,《广义相对论引论》,北京大学出版社,北京,1997。 3. S. Weinberg,Gravitation and Cosmology,John Wiley Sons,Inc.,New York,1972. 撰写人:邓祖淦(中国科学院研究生院) 撰写日期:2001年09日

周成康_广义相对论学习心得

广义相对论学习心得 理论物理周成康 学号16212289 张宏浩老师您好,我是选修了您的广义相对论的硕士生周成康,首先谢谢您在广相课程中的付出的劳动。 我的导师是姚道新老师,方向是关联电子体系的蒙特卡洛模拟。虽然方向与广义相对无关,但是基于兴趣选择了广义相对论的课程。很高兴选修了张宏浩老师的广义相对论的课程,本人本科只是一般院校,基础一般,不能说得上好,所以刚开始听的几堂课都比较吃力,但老师您的课幽默不失风趣,是我能够坚持听下来,对广义相对论与黎曼几何有了一定程度的了解。 广义相对是描述物质间的引力相互作用的理论,将引力与时空的变化相联系起来,而描述时空变化的工具是黎曼几何和张量分析。黎曼几何相对于欧几里的几何的优势在于,在描述同样的空间扭曲时,不需要引入额外的维度来描述,例如描述二维曲面时,在欧氏几何需要三维空间才能表达,但是在黎曼几何却只需要同样的二维表达。这意味着分析广相时,使用黎曼几何能有效简化过程,只利用最少的维度便可以表示清楚。 在广义相对论理论体系中,基本假设包含以下几点:1,等效原理:爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走;2,广义相对性原理:物理定律的形式在一切参考系都是不变的。该定理是狭义相对性原理的推广。在狭义相对论中,如果我们尝试去定义惯性系,会出现死循环:一般地,不受外力的物体,在其保持静止或匀速直线运动状态不变的坐标系是惯性系;但如何判定物体不受外力?回答只能是,当物体保持静止或匀速直线运动状态不变时,物体不受外力。很明显,逻辑出现了难以消除的死循环。这说明对于惯性系,人们无法给出严格定义,这不能不说是狭义相对论的严重缺憾。为了解决这个问题,爱因斯坦直接将惯性系的概念从相对论中剔除,用“任何参考系”代替了原来狭义相对性原理中“惯性系”;3,引力质量与惯性质量:人们做了许多实验以测量同一物体的惯性质量和引力质量。所有的实验结果都得出同一结论:惯性质量等于引力质量(实际上是成正比,调整系数后,就变成"等于"了,这么做是为了方便计算),牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。 广义相对不但是人们对时空与引力的认识跨入一个新的高度,同时也预言了许多新的现象和结论,包括引力波,引力透镜效应等。 引力波随着LIGO成功测得,成为时下热词。在爱因斯坦的广义相对论中,引力被认为是时空弯曲的一种效应。这种弯曲是因为质量的存在而导致。通常而言,在一个给定的体积内,包含的质量越大,那么在这个体积边界处所导致的时空曲率越大。当一个有质量的物体在时空当中运动的时候,曲率变化反应了这些物体的位置变化。在某些特定环境之下,加速

学习广义相对论宇宙论的心得体会

学习广义相对论心得体会学习广义相对论宇宙论的心得体会 最近看完梁灿斌的微分几何与广义相对论教程中的宇宙论部分,果然比以前的学到的科普知识深了一层,下面就来写一段自己的小结体会。 先谈一下宇宙论的范围,以前总觉得好像研究宇宙中的东西就叫做宇宙论,但现在知道宇宙论研究的就是宇宙本身,如果研究其中恒星、黑洞之类的,还称不上的严格意义上宇宙论。宇宙论有一条基本原理,就是宇宙在大尺度下是均匀与各向同性的,即使是星系(比如我们的银河系)乃至星系团,在浩瀚宇宙中也只是沧海一粟而已。 由宇宙学原理,我们可以选定各向同性参考系,并且知道宇宙的空间几何(三维)是常曲率的,因此只可能有球形、平直或者是双曲型的度规结构。然而,我们还要考虑的宇宙四维时空结构,为此我们需要使用所谓的Robertson-Walker度规。请注意,宇宙的时空并不是一个单纯的容器,而是与物质分布通过Einstein方程G=8πT相联系。Einstein当年并不满意这个方程得到的动态解,特别增加了一项宇宙因子项Λ,通过求解修正的Einstein 方程G+Λg=8πT得到静态宇宙解,但遗憾的是这个解是不稳定的。然而,关于宇宙因子Λ的讨论却是几经周折,当量子场论发现“真空不空”时就解释成了真空的能量密度,1998 年的观测发现宇宙加速膨胀时又以Λ作为了主要原因。 借助于Robertson-Walker度规,可以对Einstein方程做一番复杂的推到,最后得到Friedmann方程,实际上宇宙论的讨论大都是从Friedmann方程出发的。由Friedmann方程,我们可以得到两种极端情况,对于尘埃宇宙的能量密度ρ∝a^(-3),而辐射宇宙(极早期)则有ρ∝a^(-4),其中a是R-W度规中的尺度因子。此外,Friedmann方程还引出了奇点问题,后来Penrose与Hawking断言了在相当宽容的条件下,奇点是不可避免的,这说明广义相对论与经典物理有着不相容的一面。物理学家曾试图用量子力学的方法来消除奇点问题, - 1 -

天文学论文

关于大爆炸宇宙论的看法 在学完天文学概论这门课程后,我对于我们现在所处的地球以及整个宇宙都产生了极大的敬畏、尊重之情和好奇心。同时也发现,在讨论天文学的同时脱离不了物理学的讨论,天文与物理息息相关。 在听了老师对整个宇宙的起源及发展的讲述后,我对其中的大爆炸宇宙论产生了极大的兴趣。在此之前有许多的科学家都对宇宙的构造和本原提出了观点。由文艺复兴时代哥白尼的日心说开始,建立了牛顿静态宇宙观。牛顿静态宇宙观不单指牛顿本人的论述,而是泛指在牛顿经典力学体系架构下,对宇宙整体特性形成的观念。牛顿静态宇宙观的基本观点是:时间和空间是绝对的,相互独立的;时间和空间都是无限的。但后来人们发现了原子内部的秘密,窥测到了遥远河外星系的行踪。普朗克实验启发了薛定谔等人,使他们创建了量子力学。这些发现都与牛顿经典力学中的理论所相悖,而更与爱因斯坦的广义相对论更加契合。而后爱因斯坦提出了有限无界宇宙模型,模型服从黎曼几何学。这个模型指出现实的三维空间是一个无界空间,没有边界;宇宙是没有中心的。但只要有物质,宇宙中就存在引力场,引力场的大小与时空弯曲的程度有关。时间和空间的结构和性质是依赖物质的,不能独立于物质而绝对地存在。如果物质没有了,时间和空间也就跟着没有了。爱因斯坦为了克服静态宇宙模型的不稳定性在

引力场方程中加入常数表示宇宙项,但后来在1992年,苏联数学家弗里德曼通过求解出不含宇宙项的引力方程的通解而得到一个膨胀的有限无界宇宙模型,而这个模型最终也被天文观测所证实。 在膨胀的有限无界宇宙模型的观念下,伽莫夫和阿尔弗、赫尔曼提出了一个比较完整的宇宙创新理论。该理论提出,宇宙是在高温高压的状态下,原始的基本粒子即中子突然膨胀,中子衰变转化为其他粒子后,逐渐形成其他的元素,从而形成整个星系等天体。当时由于没有条件去证明这个理论是否成立,也没有什么科学家认为这一理论是正确的。当时并没有受到重视,被人们戏称为“大爆炸理论”。20多年后,理论被证实后才成为了举世公认的“标准宇宙模型”。 在大爆炸理论中,在最开始的三分钟里就已经快速地发生了许多反应。我们根据相等的宇宙温度下降间隔来将最初的三分钟里发生的反应逐一看清楚: (1)第一个画面:宇宙温度为1011K,充满着数量丰富的粒子,包括电子及其反粒子、正电子、光子、中微子。在第一个画面中,宇宙的密度非常大,逃逸速度也相应变大,宇宙膨胀的特征时间约为0.02S i。其中,最重要的反应是:反中微子+质子?正电子+中子;中微子+中子?电子+质子。假设中微子与反中微子、正电子和电子数量都相差不多,质子转化为中子和中子转化为质子的速度也就相差无几,质子数和中子数大致相等。 (2)第二个画面:宇宙温度为3×1010K,宇宙中的主要成分的粒子仍处于热平衡状态,还没有质的变化。因此,能量密度按照温度的

百度相对论吧视频导航 20101005

CassioPeia系列科普视频:关于物理学概念的通俗讲解,均配有英文字幕,部分有中文翻 译,详见帖子后面的回复。内容包括:物理学;相对论;宇宙;量子力学;标准模型。 百家讲坛——物理的挑战:共14讲,包括杨振宁、李政道、丁肇中在内的物理学家,总结 物理学的发展历程,并对今后的发展做出展望。 清华大学普通物理:杨振宁教授曾在清华大学讲授过一个学期的普通物理课,这是当时的 录像。配套教材是哈里德著《物理学基础》。授课语言主要是英语。我们提供教材及学习辅导的电子书下载。 上海交大大学物理:2个学期的课程,内容完整,范围包括力学、热学、电磁学、光学、近 代物理等。是非物理理工科专业学习的课程。 麻省理工学院力学:共36讲,适合非物理专业或物理专业低年级学生。内容丰富全面,课 堂演示实验是其最大特色。英文授课,点此下载讲稿(需要科学网帐号)。 绍兴文理学院力学:共60讲,内容全面。 中科大电磁学:共68讲,内容全面。 麻省理工学院电磁学:共36讲,适合非物理专业或物理专业低年级学生。英文授课,点此 下载讲稿(需要科学网帐号)。 麻省理工学院振动和波:共23讲,英文授课。适合非物理专业或物理专业低年级学生。 麻省理工学院热力学:共36讲,是麻省理工学院化学系开设的课程。 厦门大学热力学与统计:较为全面的学习资料,包括视频、课件、习题等。 Berkeley大学物理学基础:一个学期的大学物理课程,共24讲,内容全面,选材广泛。适 合非物理专业学生。英文授课,教授语速较快。 Yale大学物理学基础:一个学期的大学物理课程,共24讲,由著名物理学家Shankar教 授主讲。内容全面,涵盖了大学物理的主要内容。适合非物理专业学生。英文授课,已有字幕组制作中文字幕。 国立交通大学基础物理:由电子物理系李威仪教授主讲,授课风趣细致,内容比较全面。 北京大学物理学讲座:由程檀生教授主讲,面向非物理专业学生,属于拓展知识面的科普 讲座。内容包括原子核物理、粒子物理以及凝聚态物理学。 其它零散的大学物理视频有:复旦大学侯晓远教授主讲的万有引力;复旦大学蒋最敏教授 主讲的动量和动量守恒定律;复旦大学文科物理(物理与文化、自学物理实验)北京大学陈秉乾教授主讲的电磁学第一章:静电学;北京师范大学梁灿彬教授主讲的电磁学(静电场的高斯定理、动生电动势);复旦大学金晓峰教授和孙鑫教授主讲的热力学和统计物理学,配有孙鑫教授的教案;还有一些高中物理和大学物理的视频资源,适合教师用在课件之中。

相对论

相对论(关于时空和引力的基本理论) 相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论的基本假设是相对性原理,即物理定律 与参照系的选择无关。 狭义相对论和广义相对的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理 的假设下,广泛应用于引力场中。相对论极大地改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。它发 展了牛顿力学,推动物理学发展到一个新的高度。 狭义相对性原理是相对论的两个基本假定,在目前实验的观测下,物体的运动与相对 论是吻合很好的,所以目前普遍认为相对论是正确的理论。 研究发展编辑 研究历程 广义相对论 1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与 光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。[1] 1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含 了狭义相对论的基本思想和基本内容。这篇文章是爱因斯坦多年来思考以太与电动力 学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太 漂流是不存在的。[2] 1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原 理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根

爱因斯坦及其广义相对论

爱因斯坦及其广义相对论 摘要:爱因斯坦创立了相对论,对物理学发展和人类思想的发展产生了深远影响。其中广义相对论把相对论原理推广到非惯性参考系和弯曲空间,建立了新的引力理论,为科学地研究宇宙结构开辟了道路。本文在介绍爱因斯坦对现代宇宙论重要贡献的同时,详细介绍了广义相对论的理论和该理论为人类带来的深远影响。 关键词:爱因斯坦广义相对论时空弯曲 广义相对论是1916年由爱因斯坦独立提出的科学史上的一大杰出理论。它引用了高深数学的张量及黎曼几何,重新诠释了引力的概念,描述了一个完全不同的宇宙。几乎宇宙所有的奥秘都隐藏在相对论简单的公式中,从相对论里人们发现了时间旅行、宇宙的起源和终结和黑洞等奇妙现象。 爱因斯坦是20世纪最伟大的科学家。他的基础理论深刻地影响着社会进步,甚至当代各类重要的消费产品在技术上也是依据爱因斯坦的理论。如光效应理论为太阳能电池、光电探测器奠定了基础,射线受激辐射是激光器的理论基础,相对论则为GPS全球卫星导航系统提供所需的修正。 一、爱因斯坦完成了人类科学史上的一座丰碑 爱因斯坦在瑞士苏黎世联邦理工学院读了四年师范的物理及数学。在大学里,他精读了基尔霍夫、玻尔兹曼、洛伦兹、麦克斯韦等世界著名物理学家的主要著作,这些书籍对他影响颇深。爱因斯坦对光线及以太非常好奇,在大学时,他设计了一个实验,用抽气机抽空一玻璃瓶。他认为,当瓶内的空气及以太都被抽光后,因为没有以太传播光,玻璃瓶就会变成不透明的。他用的瓶子很薄,以免光线从瓶子的玻璃中绕道而走,连续抽了几天,玻璃瓶还是透明的。直到有一天,薄瓶子突然因高真空而炸掉了,爱因斯坦几乎因此受伤,但这次经历并没有打消掉他对物理和数学的热情。 毕业后不久,爱因斯坦从事瑞士伯尔尼专利局公务员工作,这期间,他和一些对物理、数学感兴趣的朋友,成立了一个科学讨论会。他们定期在会员家中开读书会,讨论物理、数学及哲学问题。他的很多论文都是在这段时期完成的。 1905年对爱因斯坦而言是奇迹的一年。在这一年里,爱因斯坦完成了博士论文,并发表了5篇震惊世界的论文,其中4篇论文最为重要。第一篇论文《关于光的产生和转化的一个启发性观点》,解释了光的本质,这使他在1921年荣获了诺贝尔物理学奖。第二篇《关于热的分子运动论所要求的静止液体中悬浮小粒子的运动》提供了原子确实存在的证明。第三篇是30页的《论动体的电动力学》提出时空关系新理论,被称为“狭义相对论”,它改变了整个世界。第四篇是仅有3页的《物体的惯性与它的能量值有关吗?》。在这篇文章中,他得出了人类历史上最著名的公式:。爱因斯坦的文章里充满了美妙和新奇的构想,很快就获得了

广义相对论引力波(论文)

引力波探索 姓名:于克锋 学号:2003080007 摘要: 电荷被加速时会发出电磁辐射,同样有质量的物体被加速时就会发出引力辐射,这是广义相对论的一项重要预言 关键字: 引力波(gravitational waves) 广义相对论电磁波 引力波: 牛顿在数学,物理和天文学方面有着许多重要的贡献。但是,他最为人知的贡献是发现了引力学定理。爱因斯坦的许多理论,包括对引力波的预言,都是从牛顿引力学理论中得到灵感的。 其中一个最广为人知的故事,是描述有一天,牛顿正坐在一棵苹果树底下思考着宇宙。突然一个苹果从天而降砸到了他的头上。震惊中的牛顿马上意识到发生了什么事。就在这一瞬间,他认识到了引力是怎样将物体拉向地球的。 这个故事可能是虚构的,但它却符合事实。牛顿对自然的观察使他发现了引力定理。他认识到那个将苹果拉向地球的力很可能与使月亮围绕地球转的力是一样的。从而,他认为所有物体之间一定存在一种吸引的力,并称之为引力。 根据他的发现,牛顿注意到所有物体都互相吸引。质量越大,引力越大,但随离开物体距离的增大而减小。他称这就是引力定理。 在他的引力学理论中,牛顿结合了另外三位伟大的科学家哥白尼(1473-1543),开普勒(1571-1630),伽利略(1564-1642)的理论。牛顿的理论解决了许多他那个时期的难题,包括潮汐产生的原因,地球和月亮的运动,以及彗星的轨道问题。 虽然牛顿的理论解释了什么是引力,但是,在随后的300年中,引力产生的原因仍然是个谜 爱因斯坦认为是一种跟电磁波一样的波动,称为引力波。引力波是时空曲率的扰动以行进波的形式向外传递。引力辐射是另外一种称呼,指的是这些波从星体或星系中辐射出来的现象。牛顿认为是一种即时超距作用,不需要传递的“信使”电荷被加速时会发出电磁辐射,同样有质量的物体被加速时就会发出引力辐射,这是广义相对论的一项重要预言。 引力波的基础理论 线性爱因斯坦方程 引力波广义相对论下的弱引力场可写作对平直时空的线性微扰 g_{\alpha \beta} = \eta_{\alpha \beta} + h_{\alpha \beta}\,,其中|h_{\alpha \beta}|<<1\, 这里\eta_{\alpha \beta} = diag(-1, 1, 1, 1)\,是平直时空的闵可夫斯基度规,是弱引力场带来的微

广义相对论课程教学大纲

广义相对论课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:广义相对论 所属专业:理论物理专业 课程性质:专业方向必修课 学分:3 (二)课程简介、目标与任务;‘ Einstein在1915年创建的广义相对论是关于时间—空间的性质与物质及其运动相互依赖关系的学说,是建立在广义协变性要求,等效原理和黎曼几何基础上的引力理论和宏观物质运动理论。广义相对论就其创造性和理论的深刻程度来说,都是非凡的和令人惊奇的,这一理论不仅对牛顿力学的核心内容(牛顿方程和万有引力)给予了统一和深刻的解释,还预言了许多牛顿力学所不能解释的新物理效应,并为以后的天文观测和实验所验证。本课程主要介绍广义相对论的数学基础、基本概念和基础知识以及广义相对论的经典实验验证。通过课程的学习使学生深入了解和掌握广义相对论的知识,为进一步深造打下扎实的基础,并能够应用到研究工作中。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程包括:理论力学、电动力学。先修课程是该课程的理论基础。 (四)教材与主要参考书。 教材: 广义相对论讲义,段一士 主要参考书: 1.《广义相对论》,刘辽,高等教育出版社 2.《微分几何入门与广义相对论》,梁灿彬,科学出版社 3.《Gravitation》,C.W.Misner, K.S.Thorne, J.A.Wheeler,W.H.Freeman and company 4.《General Relativity》,Robert M.Wald, The University of Chicago Press

二、课程内容与安排 第一章引言(2学时) 1.1 相对论发展简史 1.2 广义相对论基本原理 第二章黎曼几何(12学时) 2.1 张量 2.2 协变微商 2.3 曲率张量与挠率 2.4 黎曼流形、度规和黎曼联络 2.5 黎曼曲率张量 2.6 利奇(Ricci)张量、标曲率和爱因斯坦张量 2.7 黎曼曲率张量与拓扑 2.8 微分形式与外积 2.9 不变体积元和广义高斯积分定理 第三章爱因斯坦引力场方程(15学时) 3.1 广义相对论基本原理 3.2 “短程线”方程与矢量的平行移动 3.4 度规的弱引力场和低速近似与牛顿第二定律 3.5 爱因斯坦引力场方程 3.6 爱因斯坦引力场方程的作用量、Palatini公式 3.7 广义相对论中的坐标条件 第四章引力场方程的中心球对称解与新引力效应(18学时) 4.1 引力场方程的中心球对称解 4.2 行星轨道进动 4.3 光线在恒星附近的偏折 4.4 雷达回波的延迟 4.5 固有时与引力频移

广义相对论的基本原理

广义相对论的基本原理 爱因斯坦提出马赫原理、广义协变性原理和等效原理作为广义相对论的基本原理。他采用弯曲时空的黎曼几何来描述引力场,给出引力场中的物理规律,进而提出引力场方程,奠定了广义相对论的理论基础。 1、1马赫原理 狭义相对论完全废除了以太概念,即电磁运动的绝对空间,但却仍然没有对经典力学把绝对空间当作世界的绝对惯性结构的理由做出解释,也没有为具有绝对惯性结构的力学提供新的替换。也就是说,惯性系的存在,对于力学和电磁学都是必不可少的。狭义相对论紧紧地依赖于惯性参考系,它们是一切非加速度的标准;它们使一切物理定律的形式表达实现了最简化。惯性系的这种特权在很长时间里保持着一种神秘性。为了满足狭义相对论而修改牛顿引力(平方反比)理论的失败,导致了广义相对论的兴起。 爱因斯坦是出于一种哲学欲望才把绝对空间彻底地从物理学中清除出去的。自一开始,狭义相对论就把惯性系当作一种当然的存在。可能,爱因斯坦本来也不反对在狭义相对论基础上建立的引力论。由此,爱因斯坦不得不超越狭义相对论。在这一工作中,他十分诚恳地反复强调,他得益于物理学家兼哲学家马赫的思想。爱因斯坦说:“没有人能够否认,那些认识论的理论家们曾为这一发展铺平了道路;从我自己来说,我至少知道:我曾经直接地或间接地特别从休漠和马赫那里受到莫大的启发。”爱因斯坦建立广义相对论的一个重要思想是认为时间和空间的几何不能先验地给定,而应当由物质及其运动所决定。这个思想直接导致用黎曼几何来描述存在引力场的时间和空间,并成为写下引力场方程的依据。爱因斯坦的这一思想是从物理学家和哲学家马赫对牛顿的绝对空间观念以及牛顿的整个体系的批判中汲取而来的。爱因斯坦把这一思想称为马赫原理。 马赫原理早在17世纪就已经有了萌芽。马赫的惯性思想包括四个方面的内容:(1)空间本身并不是一种“事物”,它纯粹是物质间距离关系总体的抽象。(2)粒子的惯性是由这个粒子与宇宙中所有其他物质的相互作用造成的。(3)局部的非加速度标准决定于宇宙中所有物质的平均运动。(4)力学中的所有物质都与所有物质存在相对运动。由此,马赫写道:“……如果我们认为地球在绕轴自转或处于静止状态,同时恒星在围绕着它公转,这都没有关系……惯性定律必定能证明,第二个假设和第一个假设得出的结果是精确地一致的。”我们说地球在“自旋”,自旋的弹性球在赤道上会凸起来。但是,弹性球是怎么“知道”自旋必然导致凸起的呢?对于这个问题,牛顿的回答是,它“感受”到了绝对空间的运动;马赫的回答则是,变凸的弹性球“感受”到了宇宙物质在围绕它转。对于牛顿来说,相对于绝对空间的旋转产生离心力。这种离心力完全不同于万有引力。对于马赫来说,离心力也是引力。它是由物质与物质之间的作用引起的。 爱因斯坦在走向广义相对论的进程中,曾经推测牛顿的平方反比理论可能与完全的引力理论存在许多差异。1953年,夏马(D.W.Sciama)复活并推广了19世纪天体力学家、勒维烈的学生提泽兰(F.Tisserand,1845~1896)的一种麦克斯韦式的引力理论。并且发现,它大大地包括了马赫原理:惯性力对应于宇宙的引力“辐射场”,并与距离的一次方成反比。然而,不幸的是,这种理论在其他方面严重违背相对论。比如,在狭义相对论中,质量是随速度变化的;在麦克斯韦理论中,电荷却是不变的。还有,因为E=mc2的关系式,物体的引力束缚能具有(负的)质量;这样,系统的总质量不可能等于部分的质量之和;而麦克斯韦理论中电荷(类比于质量)却是严格增加的。爱因斯坦的广义相对论对惯性问题的解决,比麦克斯韦理论要复杂得多。然而,在“一级近似”上,它可化为牛顿理论;在“二级近似”上它则具有麦克斯韦特征。

广义相对论的七大预言

广义相对论的七大预言 导读 都说引力波就是相对论预言中的最后一块拼图。那么爱因斯坦还有哪些预言呢?本期我们就来梳理一下这方面的内容。需要说明的就是,广义相对论的核心就是解释了时空弯曲,因此所有的预言都与此有关,但为了更说明问题,我们把有些类似的现象拆分成几个。其中有些就是爱因斯坦亲口说的,有些就是相对论的推论。1905年,爱因斯坦横空出世!还就是瑞士伯尔尼专利局小职员的她在这一年里连续发表了六篇论文,开启了现代物理学的新篇章,创造了神乎其神的“奇迹年”。然而这只就是个开头。 爱因斯坦并不满足于解决了惯性系的问题,她志存高远,要把相对性原理拓展到更普适的非惯性系中,彻底颠覆人们的“宇宙观”。1907年,爱因斯坦的长篇文章《关于相对性原理与由此得出的结论》,第一次抛出了“等效原理”,广义相对论的画卷徐徐展开。然而,这项工作十分艰巨,直到1915年11月。爱因斯坦先后向普鲁士科学院提交了四篇论文,提出了天书一般的引力场方程,至此,困扰多年的问题基本都解决了,广义相对论诞生了。1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,文中,爱因斯坦正式将此前适用于惯性系的相对论称为狭义相对论,将“在一切惯性系中(静止状态与匀速直线运动状态)物理规律同样成立”的原理称为

狭义相对性原理,继而阐述了“通吃”的广义相对性原理:物理规律在无论哪种运动方式的参照系都成立(包括静止、匀速直线运动、加速运动、圆周运动等惯性系与非惯性系)。 爱因斯坦的广义相对论认为,只要有非零质量的物质存在,空间与时间就会发生弯曲,形成一个向外无限延伸的“场”,物体包括光就在这弯曲的时空中沿短程线运动,其效果表现为引力。所以人们把相对论描述的弯曲的时空称为引力场,其实在广义相对论瞧来,“引力”这个东西就是不存在的,它只就是一种效果力,与所谓离心力类似。如果说狭义相对论颠覆了牛顿的绝对时空观,那么广义相对论几乎把万有引力给一脚踹下去了。倒不就是说爱因斯坦否定了牛顿,而就是完成了经典物理的一次华丽丽的升级,只就是如此彻底以至于经典物理变得面目全非了。 广义相对论提出后毫无悬念地遇到了推广的困难,因为对于我们这种生活在低速运动与弱引力场的地球人来说,它太难懂了,太离奇了。但就是逐渐地,人们在宇宙这个广袤的实验室中寻找到了答案,发现了相对论实在就是太神奇、太精彩、太伟大了。1光线偏折 几乎所有人在中学里都学过光就是直线传播,但爱因斯坦告诉您这就是不对的。光只不过就是沿着时空传播,然而只要有质量,就会有时空弯曲,光线就不就是直的而就是弯的。质量越大,弯曲越大,光线的偏转角度越大。太阳附近存在时空弯

黑洞论文

论黑洞 摘要:黑洞(Black hole)是现代广义相对论中,宇宙空间内存在的一种密度无限大,体积无限小的天体,所有的物理定理遇到黑洞都会失效。 黑洞是由质量足够大的恒星在核聚变反应的燃料耗尽而死亡后,发生引力坍缩产生的。黑洞的质量极其巨大,而体积却十分微小,它产生的引力场极为强劲,以至于任何物质和辐射在进入到黑洞的一个事件视界(临界点)内,便再无法逃脱,甚至目前已知的传播速度最快的光(电磁波)也逃逸不出。黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因高热而放出紫外线和X射线的“边缘讯息”,可以获取黑洞存在的讯息。并且,我们可以根据史瓦西半径,可计算出一个天体要维持形态的最小半径,根据黑洞的半径可反推算其质量。 一、黑洞的物质介绍 “黑洞”这个名字,总是令人遐想联翩。那么,究竟什么是“黑洞”呢? 这个名字的第一个字“黑”,表明它不会向外界发射或反射任何光线,也不会发射或反射其他形式的电磁波——无论是波长最长的无线电波还是波长最短的γ射线。因此人们无法看见它,它绝对是“黑”的。第二个字“洞”,说的是任何东西只要一进入它的边界,就休想再溜出去了,它活像一个真正的“无底洞”。[3] 也许有人会想:假如我用一只超级巨大的探照灯对准黑洞照过去,像照妖镜照住“妖怪”那样,黑洞不就“现原形”了吗?错了!射向黑洞的光无论有多强,都会被黑洞全部“吞噬”,不会有一点反射。这个“无底洞”,照样还是那么“黑”。把这种奇特的天体称为“黑洞”,真是太妙了。黑洞并不是科学家在一夜之间突然想到的。早在1798年,法国科学家拉普拉斯就根据牛顿建立的力学理论推测:“一个直径像地球、密度为太阳250倍的发光恒星,在其引力作用下,将不允许它的任何光线到达我们这里。” 这话是什么意思呢?我们不妨先从宇宙飞船说起。宇宙飞船要摆脱地球的引力进入行星际空间,速度至少要达到11.2千米/秒,否则它就永远逃不出地球引力的控制。这11.2千米/秒的速度,就是任何物体从地球引力场中“逃逸”出去所需的最低速度,称为地球的“逃逸速度”。太阳的引力比地球引力强大得多,因此太阳的逃逸速度也要比地球的大得多,为618千米/秒。再进一步,要是一个天体的逃逸速度达到了光速,那么就连光线也不可能从它那里逃逸出去了。这样的天体就是黑洞,拉普拉斯所说的那个恒星便是生动的一例。光是宇宙间跑得最快的东西,既然连光都逃不出黑洞,那么其他一切东西也就休想逃出去了。 随着科学的发展,人们对黑洞的认识也越来越深入。如今,关于黑洞的更准确的说法是:“黑洞是广义相对论预言的一种特殊天体。它的基本特征是有一个封闭的边界,称为黑洞的‘视界’;外界的物质和辐射可以进入视界,视界内的东西却不能逃逸到外面去。”正因为黑洞如此“只进不出、贪得无厌”,所以才有了一个不雅的外号:“太空中最自私的怪物”。 不过,事情也不是那么简单。出乎人们意料,黑洞这个“怪物”,有时候竟然还十分“慷慨”。这又是怎么一回事呢?原来,在20世纪70年代,英国科学家霍金等人以量子力学为基础,对黑洞作了更缜密的考察,结果发现黑洞会像“蒸发”那样稳定地往外发射粒子。考虑到这种“蒸发”,黑洞就不再是绝对“黑”的了。霍金还证明,每个黑洞都有一定的温度,而且质量越小的黑洞温度就越高,质量越大的黑洞,其温度反而越低。大黑洞的温度很低,蒸发也很微弱;小黑洞的温度很高,蒸发也很猛烈,类似剧烈的爆发。一个质量像太阳那么大的黑洞,大约需要一年才能蒸发殆尽;但是质量和一颗小行星相当的小黑洞,竟然会在一

广义相对论入门08-引力红移20160519

一、牛顿理论对引力红移的解释 光子在逃离引力场时势能增加 R m GM r r r GMm E R =???????-=?∫∞ r r d 3由于光子的质量为 2c h m ν=其中h 为普朗克常量,ν为光子的频率;光子能量变化量又可以用频率的变化量来表示 ν ??=?h E 因此 R c h GM R m GM E h 2 νν==?=??红移量为R c GM 2=?νν二、稳态时空中的标准钟 在静态时空中,要求 0=??μνg t 且()3,2,100==k g k 而在稳态时空中,不要求时轴正交,仅要求 0=??μνg t 假设太阳(P 1点)在t 1时刻发射一光线,地球(P 2点)在t 2时刻收到;太阳在t'1时刻又 发射一光线,地球在t'2时刻收到。由于时空稳态,所以121 2t t t t -=′-′移项,得 1 11222d d t t t t t t =-′=-′=需要注意的时,移项前后表达式的物理含义有着本质的区别:移项前,表示两束光线从太阳传播到地球所需要的时间相同;移项后,表示太阳发射两束光线的时间间隔与地球接受到两束光线的时间间隔相等。 ()()()()1 1222110020021100122002d 2121d d d d d d τττττr c GM r c GM g g t g t g --=--=???????-=?-=式中r 1为太阳半径R ,r 2为日地距离。当r 2>>r 1时,可认为r 2=∞,因此 121 22d 21d ττ-????? ?-=R c GM 三、广义相对论中的引力红移 频率的定义为

t N d d =ν太阳发射的光线为 1 11d d τν?=N 地球接收到的光线为 2 22d d τν?=N 令21d d N N =,则 ()()1212 212120010012112212121d d ννννττνν<-≈--=--==R c GM r c GM r c GM g g ν1表示在太阳处测得的太阳光谱,ν2表示在地球处测得的太阳光谱。红移量为L +?? ????+=--=-=222212121211R c GM R c GM R c GM Z ννν牛顿理论计算出的红移量仅为广义相对论计算出的红移量的一阶分量,而不包含高阶分量。引力红移的结论表明:当光离开引力源时,频率减小;反之,当光射向引力源时,频率增大。

爱因斯坦的相对论

系的选择无 增加。它也可以用来解释核反应所释放的巨大能量,但它不是导致原子弹的诞生的原因。而广义相对论所预言的引力透镜和黑洞,与有些天文观测到的现象符合。

绝对时空观 所谓时空观,即是有关时间和空间的物理性质的认识。伽利略变换是力学相对论原理的数学描述。它集中反映了经典力学的绝对时空观。 1.时间间隔与惯性系的选择无关 若有两事件先后发生,在两个不同的惯性系中的观测者测得的时间间隔相同。 2.空间间隔也与惯性系的选择无关 空间任意两点之间的距离与惯性系的选择无关。 我们可以看出,在经典力学中,物体的坐标和速度是相对的,同一地点也是相对的。但时间、长度和质量这三个物理量是绝对的,同时性也是绝对的。这就是经典力学的绝对时空观。 寻找以太 十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。在十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种连续介质叫做“以太”,光线和射电讯号是在以太中的波动。完整理论需要的是仔细测量以太的弹性性质,为此,哈佛大学建立了杰弗逊实验室,整个建筑不用任何铁钉,以免干扰磁测量,然而因策划者忽视了褐红色转头中所含大量铁,预计实验无法如期进行。到世纪之末,开始出现了和穿透一切以太的观念的偏差,如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论;如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。就此,人们发现,这是一个充满矛盾的理论。 迈克尔逊莫雷的实验示意图 1887年阿尔伯特·迈克尔逊和爱德华·莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研

贺显丰_广义相对论的诞生

广义相对论的诞生 物理学贺显丰14344007 摘要 广义相对论是人类思想史上的杰作,是纯粹理性思维的胜利。通往广义相对论之路展现了物理学史上一幅最激动人心最恢弘壮阔的图景。本文回顾了广义相对论诞生的历程,介绍了爱因斯坦建立广义相对论的伟大贡献,探讨了广义相对论对现代物理学的影响。 关键词 广义相对论;爱因斯坦;弯曲时空;科学史 1 引言 2015年是广义相对论创建100周年,也是狭义相对论诞生110周年。 广义相对论是爱因斯坦继狭义相对论后,对物理学作出的又一巨大贡献, 也是他一生科学成就的巅峰。 1915年11月25日,36岁的爱因斯坦在普鲁士科学院报告了“基于广 义相对论对水星近日点运动的解释”,而后在1916年第7期的物理年鉴上 发表了“广义相对论基础”一文,对广义相对论作了系统的阐释,这标志着 广义相对论的诞生。广义相对论以其深刻的物理思想、抽象的数学工具以 及精确的实验验证,成为物理学史上具有划时代意义的杰作。 本文介绍了爱因斯坦创建广义相对论的过程,以及在这一过程中爱因 斯坦经历的多次物理思想上的飞跃,从中我们可以了解一般科学研究的方 法,这对现实的科学研究具有重要意义。我们还在最后简要探讨了广义相 对论对现代物理学的影响。 2 广义相对论的诞生 2.1 狭义相对论的困难 狭义相对论发表之后,受到了学术界的赞扬,但是也有一些反对的意 见,不过爱因斯坦很清楚这些反对的人是因为没有理解相对论。可是很快, 爱因斯坦便认识到自己的狭义相对论确实存在问题,而且是很严重的问 题,但并非是反对者所谓的问题。他的理论面临着两个严重的困难:一个 是“惯性系无法定义”;另一个是“万有引力定律不能写成洛伦兹协变的形 式”。 狭义相对论是建立在惯性系的基础上的,然而现在惯性系却无法定义 了,这是一个严重的问题。在牛顿理论中,惯性系被定义为相对于绝对空 间静止或作匀速直线运动的参考系,但是狭义相对论抛弃了绝对空间,因 此上述定义不再有效。爱因斯坦曾尝试利用牛顿第一定律来重新定义惯性 系,即一个不受外力的物体在其中保持静止或匀速直线运动状态的参考系 为惯性系,但是“不受外力”意味着一个物体能在惯性系中保持静止或匀速 直线运动的状态。很明显这种定义造成了逻辑上的循环。可见,惯性系的 定义问题是狭义相对论的一个基本困难。

8835_新技术讲座福建

任务1(已评阅) 学号:1635001410049 姓名:林韶锋试卷号:8835 课程:新技术讲座总分100 总共40题,客观题40.0分,主观题60.0分 客观题共20题(满分40分) 一、单项选择题(共10题,每题2分) 第1题(已答). 2.基本粒子的相互作用的4种基本力是()、电磁力、强力和弱力。 A. 牵引力 B. 地心引力 C. 万有引力 D. 磁力 【答案解析】 第2题(已答). 6.多媒体信息、集成化处理和()的数字化是多媒体技术的三要素。 A. 人机交互 B. 人工制造 C. 卫星通信 D. 无线通信 【答案解析】 第3题(已答). 7.通信技术更多试题及答案+扣二九七九一三九六八四和通信产业是20世纪80年代以来国际国内发展最快的领域之一,也是人类进入()的主要重要标志之一。

A. 网络社会 B. 信息社会 C. 虚拟社会 D. 未来社会 【答案解析】 第4题(已答). 4.计算机的主要特点包括运算速度快、运算精度高和超强()能力。 A. 记忆.逻辑运算.自动执行程序 B. 编译程序 C. 自动保存 D. 都不对 【答案解析】 第5题(已答). 8.基因工程的核心技术是()。 A. DNA重组 B. 蛋白质药物 C. 超级抗生素 D. 抗凝血 【答案解析】 第6题(已答). 5.()是当代整个信息技术发展的基础。 A. 微电子技术 B. 计算机技术 C. 通讯技术

D. 都不对 【答案解析】 第7题(已答). 3.音频、视频()技术是多媒体技术的关键。 A. 压缩 B. 播放 C. 编辑 D. 都不对 【答案解析】 第8题(已答). 10.蛋白质工程第一个十分成功的范例是()的人工合成。 A. 生长激素 B. 治癌酶 C. 胰岛素 D. 人体胚胎干细胞 【答案解析】 第9题(已答). 9.()技术的研究与开发是当今世界最为活跃的科技领域。 A. 生物 B. 有线通讯 C. 突变技术 D. 电磁 【答案解析】 第10题(已答). 1.多莉羊是科学家采用()技术复制出来的。 A、电融合 B、发酵 C、克隆 D、芯片

相对论是关于时空和引力的基本理论

相对论是关于时空和引力的基本理论,主要由阿尔伯特·爱因斯坦(Albert Einstein)创立,依据研究的对象不同分为狭义相对论和广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,共同奠定了近代物理学的基础。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。 相对论(Relativity)的基本假设是相对性原理,即物理定律与参照系的选择无大质量物体扭曲时空改变物体行进方向关。狭义相对论(Special Relativity)和广义相对论(General Relativity)的区别是,前者讨论的是匀速直线运动的参照系(惯性参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论和量子力学是现代物理学的两大基本支柱。经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。狭义相对论提出于1905年,广义相对论提出于1915年(爱因斯坦在1915年末完成广义相对论的创建工作,在1916年初正式发表相关论文)。 由于牛顿定律给狭义相对论提出了困难,即任何空间位置的任何物体都要受到力的作用。因此,在整个宇宙中不存在惯性观测者。爱因斯坦为了解决这一问题又提出了广义相对论。 狭义相对论最著名的推论是质能公式,它说明了质量随能量的增加而增加。它也可以用来解释核反应所释放的巨大能量,但它不是导致原子弹的诞生的原因。而广义相对论所预言的引力透镜和黑洞,与有些天文观测到的现象符合。 根据质能方程,人们很容易推出“ 光速是宇宙中最快速度”。因为,当物体达到光速时,其质量将变得无穷大,与事实不相符。然而,还有人提出,存在着两种宇宙,即“快宇宙” 和“ 慢宇宙”。所有基本粒子在快宇宙中比光速快,即快子,因此,他们所组成的物质也比光速快,反之亦然。此外,有天文学家惊人观测到超光速现象,包括星系相离的速度、类星体膨胀的虚度等等。但是,至今没有一种说法令人信服,也没有一种说法推翻相对论。绝对时空观 所谓时空观,即是有关时间和空间的物理性质的认识。伽利略变换是力学相对论原理的数学描述。它集中反映了经典力学的绝对时空观。 1.时间间隔与惯性系的选择无关 若有两事件先后发生,在两个不同的惯性系中的观测者测得的时间间隔相同。 2.空间间隔也与惯性系的选择无关 空间任意两点之间的距离与惯性系的选择无关。 我们可以看出,在经典力学中,物体的坐标和速度是相对的,同一地点也是相对的。但时间、长度和质量这三个物理量是绝对的,同时性也是绝对的。这就是经典力学的绝对时空观。 以太? 十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。在十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种连续介质叫做“以太”,光线和射电讯号是在以太中的波动。完整理论需要的是仔细测量以太的弹性性质,为此,哈佛大学建立了杰弗逊实验室,整个建筑不用任何铁钉,以免干扰磁测量,然而因策划者忽视了褐红色砖头中所含大量铁,预计实验无法如期进行。到世纪之末,开始出现了和穿透一切以太的观念的偏差,如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论;如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。就此,人们发现,这是一个充满矛盾的理论。

相关文档
相关文档 最新文档