文档库 最新最全的文档下载
当前位置:文档库 › 羰基二咪唑

羰基二咪唑

羰基二咪唑
羰基二咪唑

多肽合成常用试剂

多肽合成常用试剂(Reagents for Peptide Synthesis):

O-苯并三氮唑-N,N,N',N'-四甲基脲四氟硼酸酯(TBTU)英文名称:O-Benzotriazole-N,N,N',N'-tetramethyluronium tetrafluoroborate 分子式:C11H16BF4N5O 分子量:321.10 CAS号:125700-67-6 结构式: 理化性质:性状:白色结晶 纯度:≥98% 干燥失重:小于1.0% 熔点:大于205℃ N,N-二异丙基乙胺(简称DIPEA) 产品简介 一、理化性质: 别名:N,N-乙基二异丙胺(简称DIPEA) 英文名:N,N-Diisoproylethylamine 结构式:[(CH3)CH]2NCH2CH2 分子量:129.24 外观:无色液体 密度:0.742 沸点:128℃ 折射率:1.412

闪点:10℃ CAS号:7087-68-5 本产品溶于醇及其它多数溶剂,易挥发,呈碱性 二、质量标准 指标名称优级品一级品二级品 含量%≥99.599.098.0 二乙胺%≤0.020.030.05 水分%≤0.020.030.03 三、用途:N,N-二异丙基乙胺,是重要的有机化工中间体,其重要用途有以下几个方面: 1、重要的医药。农药中间体,可用来制造医药麻醉剂,农药除草剂等; 2、用作缩合剂,如用于胺。CO2和卤代轻缩合生成脲烷的反应中 3、用作催化剂,如用作高压条件下酯水解的催化剂;在苯基氯甲酸的水解或缩合中用作催化剂;在三氟苯存在下作为二氢呋喃芳基化的催化剂等。 四、包装 200L镀锌铁桶装,也可根据客户要求定做。 产品特征? 产品型号特级品 产品产量400吨/年 N-羟基苯并三氮唑(HOBT) N-羟基苯并三氮唑 英文名称:N-Hydroxybenzotriazole hydrate(HOBT) 分子式:C6H5N3O·H2O 分子量:135.13 CAS号:123333-53-9

经典合成反应实用标准操作

经典化学合成反应标准操作药明康德新药开发化学合成部编写

前言 有机合成研究人员在做化学反应经常碰到常规的反应手边没有现成的标准操作步骤而要去查文献,在试同一类反应时,为了寻找各种反应条件方法也得去查资料。为了提高大家的工作效率,因此化学合成部需要一份《经典合成反应标准操作》。在这份材料中,我们精选药物化学中各类经典的合成反应,每类反应有什么方法,并通过实际经验对每类反应的各种条件进行点评,供大家在摸索合成条件时进行比较。同时每种反应的标准操作,均可作为模板套用于书写客户的final report,这样可以大大节省研究人员书写final report的时间,也相应减少在报告中的文法错误。另外本版是初版,在今后的工作中我们将根据需要修订这份材料。 药明康德新药开发化学合成部 2005-6-28

目录 1.胺的合成 a)还原胺化 b)直接烷基化 c)腈的还原 d)酰胺的还原 e)硝基的还原 f)叠氮的还原 g)Hoffman降解 h)羧酸通过Cris 重排 2.羧酸衍生物的合成 a)酰胺化的反应 b)酯化反应 c)腈转化为酯和酰胺 d)钯催化的插羰反应 e)酯交换为酰氨 3.羧酸的合成 a)醇氧化 b)酯水解 c)酰胺的水解 d)腈的水解 e)有机金属试剂的羰基化反应 f)芳香甲基的氧化

4.醛酮的合成 a)Weinreb 酰胺合成醛酮 b)醇氧化 c)酯的直接还原 d)有机金属试剂对腈加成合成酮 5.脂肪卤代物的合成 a)醇转化为脂肪溴代物 通过PBr3 转化 通过PPh3 与CBr4 转化 HBr直接交换 通过相应的氯代物或磺酸酯与LiBr交换、 b)醇转化为脂肪氯代物 通过SOCl2转化 通过PPh3 与CCl4 转化 HCl直接交换 c)醇转化为脂肪碘代物 通过PPh3 与I2 转化 通过相应的氯代物或磺酸酯与NaI交换 6.芳香卤代物的合成 a)Sandermyyer 重氮化卤代 b)直接卤代 c)杂环的酚羟基或醚的卤代 7.醇的合成 a)羧酸或酯的还原 b)醛酮的还原 c)卤代烃的水解

N_N_羰基二咪唑作为活化剂在高分子合成中的研究进展

基金项目:教育部博士点基金资助项目(20030532003); 作者简介:徐伟箭,男,46岁,教授,研究方向为高分子合成与应用。N ,N 羰基二咪唑作为活化剂在高分子合成中的研究进展 许小聪,刘美华,卢彦兵,徐伟箭* (湖南大学化学化工学院,长沙 410082) 摘要:本文综述N ,N 羰基二咪唑作为活化剂制备脲、酯、碳酸酯、氨酯及酰胺类化合物的反应机理,并对 其在高分子领域的应用进行了总结。 关键词:N ,N 羰基二咪唑;活化剂;高分子 N,N 羰基二咪唑(简称CDI)是咪唑的衍生物,由结构分析可知,其咪唑结构中具有一个闭合的大P 键,且其中一个氮原子未成键的sp 2 轨道上有一对孤对电子。这些决定了CDI 具有较强的化学反应活性,能与氨、醇、酸等官能团反应,合成许多用一般化学方法难以得到的化合物。 CDI 广泛用作酶和蛋白质粘合剂,抗生素类合成药物中间体,特别是作为合成多肽化合物的键合剂[1,2]。近年来,通过对CDI 作为活化剂的研究发现,它具有较强的反应活性,适用面广,反应过程低毒、产物纯化简单,特别是对不同的官能团具有高度选择性,在有机合成和高分子领域中具有非常重要的意义。1 CDI 作为活化剂的反应机理 CDI 可与氨(胺)、醇、羧酸等官能团进行反应,得到一系列具有不同结构的中间体,即:氨基甲酰咪唑(氨基甲酰咪唑盐)、酯基咪唑、羰基咪唑等。这些中间体具有一定的反应活性,可与氨(胺)、醇、羧酸等官能团进一步反应,制备脲、氨酯、碳酸酯、 酰胺及酯等结构的化合物。 图1 具有反应活性的中间体的合成 Figure 1 Syn thesis of activating intermediate 1 1 脲 脲的制备主要是通过氨基甲酰咪唑和氨基甲酰咪唑盐与氨(胺)类化合物进一步反应制得。C DI 与伯胺反应形成的中间产物(一取代氨基甲酰咪唑)可与脂肪族伯胺进一步反应,得到脲[3];而其与仲胺反应得到的N ,N 二取代氨基甲酰咪唑活性明显下降,不能与伯胺、仲胺反应[4]。 为提高二取代氨基甲酰咪唑的反应活性,Robert 等利用碘甲烷作为亲核试剂进攻氨基甲酰咪唑,得到了具有高反应活性的氨基甲酰咪唑盐[5]。采用该咪唑盐可在极为温和的条件下制备非对称的三取代脲和四取代脲。由于它具有很高的反应活性,可应用于液相、准液相以及固相反应体系中 [9,10]。

达比加群酯合成工艺杂质分析

达比加群酯合成工艺杂质分析 一.达比加群酯结构式 二.合成路线: 1.成脒反应 2.酰化反应 3.达比加群酯甲磺酸盐合成 三.达比加群酯杂质来源分析: 通过达比加群酯合成文献及结构式推测了以下杂质的可能的产生来源:1.达比加群酯杂质ZA 该杂质可能来源是在酰化反应中,四氢呋喃-水-氢氧化钾体系下达比加群酯发生酯基水

解反应。也可能是该步中间体(2)首先发生水解反应生成达比加群酯杂质ZB,后发生酰化反应生成。 2.达比加群酯杂质ZB 该杂质可能来源是在酰化反应中,四氢呋喃-水-氢氧化钾体系下中间体(2)生酯基水解反应。 3.达比加群酯杂质ZC 该杂质可能来源是在成脒反应中产生的杂质(达比加群酯杂质ZM)在酰化反应发生反应而产生。 4.达比加群酯杂质ZD 该杂质可能来源是在酰化反应中由酰化剂引入的杂质而产生的杂质。 5.达比加群酯杂质ZE

该杂质可能来源是在酰化反应中由酰化剂引入的杂质而产生的杂质。 6.达比加群酯杂质ZF 该杂质可能来源是是制备中间体(1)的过程中原料与溶剂醋酸反应生成,如下图所示。 7.达比加群酯杂质ZG 该杂质可能来源是是制备中间体(1)的过程中原料与缩合剂CDI(羰基二咪唑)反应生成,如下图所示。 8.达比加群酯杂质ZH 该杂质可能来源是在成脒反应中产生的杂质在酰化反应发生反应而产生。

9.达比加群酯杂质ZI 该杂质为合成路线中间体(1),残留引入终产品。 10.达比加群酯杂质ZJ 该杂质为在成脒反应中产生亚胺酯中间体,残留引入终产品。 11.达比加群酯杂质ZK 该杂质可能为合成路线中与某一步与甲醇发生酯交换反应生成,残留引入终产品;或者由合成原料中的甲酯杂质引入。 12.达比加群酯杂质ZL

羰基二咪唑促进的酰胺化偶联

N,N′-Carbonyldiimidazole-Mediated Amide Coupling:Significant Rate Enhancement Achieved by Acid Catalysis with Imidazole·HCl Emily K.Woodman,Julian G.K.Chaffey,Philip A.Hopes,*David R.J.Hose,and John P.Gilday* AstraZeneca,Global PR&D,A V lon Works,Se V ern Road,Hallen,Bristol BS107ZE,U.K. Abstract: Over a series of10aromatic amines we show the rate of CDI mediated amidation to be signi?cantly enhanced upon introduction of imidazole·HCl as a proton source for acid catalysis.Our work supports and provides an application for previous investigations into the imidazolium effect,thus increasing the scope of CDI as an amide-coupling reagent with aromatic amines.The in?uence of the relative p K a of the amines studied on the rate of reaction was also investigated. Introduction N,N′-Carbonyldiimidazole(CDI)is one of several commonly used reagents for coupling carboxylic acids with aliphatic or aromatic amines to form amides1(Scheme1).Since its initial development as a reagent in19602its applicability has been shown both in small-scale research and in large-scale manu-facture.3 CDI(2)has several bene?ts as an amide-coupling reagent in large-scale manufacture.It is relatively cheap and readily available in kilogram quantities,and the only byproducts are carbon dioxide and imidazole which,being relatively benign, are unlikely to cause problems on scale up(Scheme1).These bene?ts make CDI(2)an excellent reagent for activating amide-coupling reactions at scale;however,CDI(2)is not without its drawbacks.Slow reaction rates between aromatic amines and the CDI intermediates4have limited the scope of the reaction in the pharmaceutical and the?ne chemicals industries. CDI(2)was used recently for an amide coupling reaction in an AstraZeneca project.The coupling,involving two aromatic substrates,proceeded at a satisfactory rate in the laboratory, but the rate was observed to be signi?cantly retarded upon scale up to the large-scale laboratory(LSL).Initial suggestions were that scale-up factors such as changes in rate of carbon dioxide removal and in batch water content had led to the rate retard-ation.The in?uence of carbon dioxide on the rate of a CDI-mediated amide coupling reaction has already been investigated by Vaidyanathan and co-workers,5but it was thought that in our case the reduction in water content,reducing proton availability,was the overriding factor.Following this,we initiated a work programme on a model system in order to gain a better understanding of the reaction mechanism and those factors that would affect the robustness of the process. The mechanism for the reaction of acyl-imidazole intermedi-ates with nucleophilic reagents has been reported,6and it has been shown that signi?cant rate improvements can be achieved through use of a cationic imidazolide intermediate(7)(Scheme 2)in reactions with nucleophiles.7This imidazolium effect4has been applied in the case of aliphatic amines and demonstrated to be bene?cial to the rate of CDI-mediated amidations,due to the increased reactivity of the intermediate containing a pro-tonated or methylated imidazole leaving group.To our know-ledge there is no precedent for the application of the imidazo-lium effect to achieve rate enhancements in amide-coupling reactions with aromatic amines. Consideration of the literature led us to devise a hypothesis that the addition of a weakly acidic compound to the amide coupling reaction would have two advantageous effects.First, it would act as a proton source that is required in the proton transfer steps,and second it would result in the partial protonation of the imidazolide(3),leading to the more reactive intermediate(7a).Therefore,the weakly acidic compound would not only lead to the required increased rate of reaction, but it would also result in a more robust process.Whilst the option of using methylating agent,such as methyl iodide,was considered,it was not pursued as Jencks and co-workers have previously shown that methylated and protonated intermediates are equivalent in the case of weakly nucleophilic amines.6,7In addition,it is desirable to avoid the use of toxic alkylating reagents such as methyl iodide. Our choice of weakly acidic compound was required to meet a number of criteria:it had to be cheap and readily available in kilogram quantities;it must be easily removed from the reaction mixture with little or no modi?cations to the current work-up procedure;it must not lead to the formation of impurities that may affect the downstream chemistry;and?nally it must be acidic enough to increase the concentration of the protonated intermediate(7a),but not suf?ciently acidic to signi?cantly protonate the nucleophilic amine.To this end,imidazole·HCl was selected as it meets all of the above requirements and imidazole is already present in the reaction mixture.We hypothesised that the aqueous disassociation constant of imidazole·HCl(p K a)7.0)8would be suf?ciently acidic to *To whom correspondence should be addressed.Telephone:+44117 9385456.Fax:+441179385081.E-mail:Philip.Hopes@https://www.wendangku.net/doc/a613281591.html,; John.Gilday@https://www.wendangku.net/doc/a613281591.html,. (1)Montalbetti,C.A.G.N.;Falque,V.Tetrahedron2005,61,10827. (2)Paul,R.;Anderson,G.W.J.Am.Chem.Soc.1960,82(17),4596. (3)Dale,D.J.;Dunn,P.J.;Golighty,C.;Hughes,M.L.;Levettt,P.C.; Pearce,A.K.;Searle,P.M.;Ward,G.;Wood,https://www.wendangku.net/doc/a613281591.html,.Process Res.De V.2000,4,17. (4)Grzyb,J.A.;Shen,M.;Yoshina-Ishii,C.;Chi,W.;Stanley Brown, R.;Batey,R.A.Tetrahedron2005,61,7153. (5)Vaidyanathan,R.;Kalthod,V.G.;Ngo,D.P.;Manley,J.M.;Lapekas, https://www.wendangku.net/doc/a613281591.html,.Chem.2004,69,2565–2568.(6)Oakenfull,D.G.;Salvesen,K.;Jencks,W.P.J.Am.Chem.Soc.1971, 93,188. (7)Wolfenden,R.;Jencks,W.P.J.Am.Chem.Soc.1961,83,4390. Organic Process Research&Development2009,13,106–113 106?Vol.13,No.1,2009/Organic Process Research&Development10.1021/op800226b CCC:$40.75 2009American Chemical Society Published on Web12/05/2008

相关文档