文档库 最新最全的文档下载
当前位置:文档库 › 板坯连铸机结晶器内电磁搅拌技术

板坯连铸机结晶器内电磁搅拌技术

板坯连铸机结晶器内电磁搅拌技术

摘要:连铸电磁搅拌技术在冶金工业中的应用可以提高钢坯的质量,降低成本消耗,提高连铸钢的等级,降低了芯部收缩,避免了芯部偏聚,改善了铸锭内等轴晶粒。因此,将电磁搅拌技术引入到炼钢生产中,将大大提升炼钢产品的品质,为炼钢工业带来新的生机。今后,工业计算机控制技术将与连铸电磁搅拌技术、冶金技术、信息技术等相融合,开拓冶金产业发展新方向,逐渐实现了电磁搅拌的可视化和自动化。同时,要充分利用新设备和新技术,大力研发新设备和新技术,以增加产品的技术含量和产品的使用效率;节能减排,节能增效,高质量钢铁产品的产量不断增加,为中国钢铁行业与国际接轨做出了重要贡献。

关键词:板坯连铸机;结晶器;电磁搅拌技术

引言

连铸坯的中心偏析、夹杂物和中心收缩是连铸坯的关键问题,严重影响连铸坯的内部质量。电磁搅拌是最常用的连铸技术,它可以通过电磁力优化和消除模具中钢水的过热。电磁搅拌后,坯料的等轴晶粒率显著提高,使坯料固化良好,提高了产品性能。本发明可以有效地解决连铸坯的中心收缩和清洁度问题。

1结晶器电磁搅拌及连铸坯概述

连铸坯是由钢水通过连铸机制成的坯段。连铸技术可以简化从钢水到钢坯的整个生产过程,而无需连铸。因此,连铸坯具有生产成本低、金属获取率高、劳动条件好等一系列优点。目前,连铸坯已成为轧制生产的重要原料。但是连铸坯也存在一些缺陷。例如,一般孔隙率、中心孔隙率、一般点偏析、皮下气泡、铸锭偏析、边缘偏析、内部气泡、残余收缩、剥落、白点、轴向晶体裂纹、非金属夹杂物和芯部裂纹。在低倍率检查中,可能会出现中心气孔、收缩、中心偏析、表面角裂纹和表面边缘裂纹等缺陷。

电磁搅拌是通过在铸坯液空腔中产生的电磁力来强化钢液在空腔中的移动,

进而强化了钢液的传热、对流和传质,进而实现对铸坯的凝结进程的控制,这对

改善铸坯的品质具有重要的意义。目前,模具电磁搅拌是最常见的设备,适用于

各种连铸机。它可以改善钢坯的表面质量,细化晶粒尺寸,减少钢坯的夹杂物和

中心孔隙率。一般情况下,为了避免影响自动液位控制装置的使用,通常安装在

模具的下部。电磁搅拌在结晶器中的作用如下:首先,提高钢坯的表面质量。坯

料的表面在模具下固化。搅拌器可以放置在模具的弯月面上,以便在凝固开始前“清洁”坯料表面。其次,提高钢坯的内部质量。它可以增加等轴晶面积,细化

晶粒尺寸,减少中心孔隙率,减少中心偏析,甚至消除白带现象。在使用模具电

磁搅拌时,应注意以下几点:首先,模具粉末可能会缠绕在它们之间,导致坯料

中有更多的夹杂物。在结晶器中进行电磁搅拌可以有效地提高钢坯的质量,提高

搅拌强度效果更显著。但也有必要将强度控制在一个固定的范围内。如果强度过高,会导致坯料中出现夹杂物结晶器粉末,从而增加夹杂物的数量,并产生负面

影响。同时,电磁搅拌也是影响模具液位检测效果的直接因素。目前,为了解决

这一问题,人们广泛使用减少搅拌线圈的安装位置,但这也限制了电磁搅拌在模

具中的冶金效果,难以通过电磁搅拌改善高碳钢的中心碳偏析。尽管模具中的电

磁搅拌可以大大降低中心偏析的偏差和峰值,但中心偏析的平均值没有明显变化。因此,很难通过电磁搅拌从根本上改善模具中碳的中心偏析。

2连铸电磁搅拌的分类

1)连铸电磁搅拌可分为结晶器电磁搅拌(M-EMS)、二次冷却电磁搅拌(S-EMS)、端部电磁搅拌(F-EMS)及其组合。在这三种混合形式中,M-EMS是提高

板坯质量最有效的方法。S-mes是最早发明的搅动形式。随着连铸技术的发展,

仅使用S-EMS或者M-EMS已经不足以满足高质量产品中的要求。在生产中,经常

采用结晶器、二次冷却区和凝固终点的混合搅拌方法。

2)结晶器电磁搅拌的分类

(1)根据钢的流动方向,连铸电磁搅拌可分为旋转搅拌、线性搅拌和螺旋

搅拌。方形、圆形和异形钢坯采用旋转搅拌,而长宽比较大的板坯和矩形钢坯采

用线性电磁搅拌。

(2)模具电磁搅拌根据安装情况可分为内置和内置两种方式。根据电磁传

感器的冷却方式,可分为三种:传统的外部水直冷、独立的外部水直接冷却、空

心铜管纯水内冷。

3在冶金行业中连铸电磁搅拌技术的成果

目前,连续铸造中的电磁搅拌技术已被普遍运用于钢铁工业中,众多世界著

名的大型公司正逐步将其研究视野向其它工业领域拓展。就冶金工业来说,科研

人员通过这些年来的探索,已经有了很大的成就。

1)钢液中的磁感应与电流强度成反比,当电流强度低时,钢液中磁感应大

且分布均匀,而当电流强度高时,磁感应不均匀。通常,角部的磁感应很高,而

中心的磁感应较低。

2)螺杆搅拌机的中央磁感值应与电流大小有关。随着电流的增大,磁场在中

间也会增大。结果表明,在不同的搅拌次数下,磁场的分布变化不大。磁场的大

小和磁场的大小对磁场的大小有一定的影响。随着电流的增大,电磁拉扯力增大,而随着搅拌次数的增大,电磁拉力降低。

3)转动的电磁作用力是一对在一个水平线上的作用力,它促使液态金属按一

定的速率进行顺时针方向的转动。在等径向间距下,所受的电磁力是等效的,并

且在其中央所受的电磁力是最小的。

4)电磁搅拌器对熔池内的热量传递产生了一定的作用。在没有电磁搅拌器的

情况下,高温的钢液会慢慢地从喷头里流出来。因此,在连铸过程中,铸坯的芯

部存在较高的温度。有了这个电动搅拌装置,水流自上而下变成了横向的。结果

表明,由于熔池内的液面埋没较深,熔池内液面的轴向和径向均较小,使得熔池

表面的液面温度差急剧增大,对换热有利。

4冶金行业的未来发展方向

中国今后钢铁工业将朝着质量、技术和创新的方向发展。结果表明,采用该

工艺能明显改善铸坯的品质。所以,继续改善钢铁的品质,学习利用先进的电磁

搅拌技术改善钢铁品质,是今后钢铁行业发展的主要趋势之一。而且通过科技手

段,降低了钢铁的含量,使得钢铁的质量得到了极大的提升,同时也增加了钢铁

的品种。冶金企业要结合自身的具体条件,对已有的工艺和设备进行合理的改造,要引入先进的工艺,以提升设备的运转效率;它不仅降低了能耗,而且使铸件的

外表和里面的组织得到了改进,而且使铸件的品质得到了提高。我们不但要研发

出拥有自己的技术,而且要对外国的技术和方法进行学习和消化,并进行试验性

研发和新设备的研制,使中国和国际上的差距逐渐缩小;促进了国内外的交流与

合作,加快了新装置、新技术在工业生产中的研发与应用,使科技的威力得到了

最大限度的发挥。

5 结语

大量实验证明,电磁搅拌技术在冶金工业中的应用可以提高钢坯的质量,降

低成本消耗,提高连铸钢的等级,降低中心收缩率,消除中心偏析,提高钢坯的

等轴晶粒产率。综上所述,连铸电磁搅拌技术在冶金行业的应用,极大地提高了

钢材质量。冶金企业还应该抓住发展的机遇,应用到新装置、新技术,研究开发

了新装置与新技术,从而提高了生产的科技含量,提高了生产的效率,降低了能

源的消耗,提高了经济的效益,生产更多的优质钢材,推动了中国冶金企业走向

世界。

参考文献:

[1]张勇.板坯连铸机粘结漏钢的原因分析及解决措施[J].冶金丛

刊,2013(02):1-3+7.

[2]石瑞.电磁搅拌技术在冶金方面的应用[J].机械研究与应用,2012(2).

[3]王晓东,王宝峰,曹建刚,等.大方坯末端电磁搅拌位置和连铸工艺参数的

确定[J].钢铁,2011,46(8):40-42.

[4]赵少飞,杨海西.电磁搅拌技术在板坯连铸中的应用[J].河北冶金,2012(5).

1连铸与电磁搅拌理论

1 连铸与电磁搅拌理论 随着用户对钢材质量提出越来越高的要求,使得提高铸坯质量成为连铸生产中的首要问题。铸坯内部质量在很大程度上取决于铸坯内部是否呈现均匀而致密的等轴晶凝固组织。但是在连铸坯实际凝固过程中,由于钢水冷却速度很快,造成铸坯凝固时柱状晶的发展,往往产生“搭桥”现象,带来缩孔偏析、疏松、夹杂物聚集等缺陷。 由于电磁场的作用具有非接触的特点,特别适合于高温钢水这种特殊场合,连铸机的电磁搅拌(electromagnetic stirring:ems)技术随之应运而生,它可以显著改善铸坯质量,因此在国内外受到高度重视并得到快速发展与广泛应用。目前,炼钢厂连铸机电磁搅拌装置已经成为冶炼高性能品种钢水必不可少的设备。 电磁搅拌的工作原理基于电磁感应定律,载流导体处于磁场中就要受到电磁力的作用而发生运动。就此而言,电磁搅拌的工作原理和异步电机相同, 搅拌器相当于电机的定子,钢水相当于电机的转子。由电磁搅拌器的线圈绕组产生旋转磁场,在导电的钢水中产生感应电流,感应电流与磁场作用产生电磁力,对钢水起到了搅拌作用。连铸电磁搅拌的实质是借助在铸坯液相穴中感生的电磁力来强化钢水的运动。带有电磁搅拌器的结晶器结构形式如图1所示。 2 电磁搅拌对电源的特殊要求 电磁搅拌系统由两大部分组成:电磁搅拌器和变频电源。 钢水之所以能被搅拌,是由于搅拌器线圈激发的交变磁场穿透到铸坯的钢水内,在其中产生感应电流,感应电流与磁场相互作用产生电磁力,电磁力作用在钢水体积元上,从而推动钢水运动。其中感生电磁力与电流强度的平方成正比。电流越大,中心磁感应强度越高。一般情况下,结晶区电磁搅拌器要求中心磁感应强度幅值>500gs;为保证达到磁感应强度要求,必须要有足够大的电流。这就要求变频电源必须能够长时间提供大电流,通常要在达到400a以上。 电磁搅拌器作用在钢水中的电磁力和钢水搅拌的速度不仅与电流强度有关,而且受电源频率的影响很大。频率的选择主要和结晶器铜管的导磁率、厚度、断面等因素密切相关,它们不仅影响最大电磁力的量值,选择不当还会弱化搅拌功率。一般情况下,为了保证磁场的穿透效果,最佳搅拌频率在1-8hz之间。一般铸坯断面大、结晶器铜管厚的电源频率取低一点;断面小、铜管薄的电源频率取高一点。 由于大电流和钢水的热效应,搅拌器线圈温度较高,为了散热,搅拌器浸泡在冷却水中,这就要求搅拌器线圈的绝缘要很高,进而造成搅拌器线圈造价不菲。为了尽可能延长搅拌器的使用寿命,变频电源要采用低电压、大电流的设计原则,并要有平滑的输出波形,以防止输出电压中的高压峰值对线圈绝缘造成破坏。 综上所述,电磁搅拌配套的变频电源要能够在低电压、低频率、大电流的情况下长时间可靠工作,对电磁搅拌器要提供必要的保护。另外,通常情况下,连铸机启用电磁搅拌时,会有多台大功率变频电源同时工作,这就要考虑避免对电网产生有害影响,影响其它用电设备的正常运行。 3 vacon变频器适于电磁搅拌使用的特点 电磁搅拌电源基本可以分为两类:一是采用分立元件,配合plc或单片机、工控机,组成变频电源;二是采用改装通用型变频器的方法。 很多电源厂家通过攻关,研制出了采用分立元件的变频电源,但是由于国内电力电子技术和产品工艺相对落后,只能采用通用型控制芯片和电子技术,难以制造出高性能的交-直-交模式的专用电源;同时因为元件数目多,而生产没有规模,制造厂缺乏严格的质量控制手段,这种电源的可靠性比大规模生产的通用型变频器要低,故障率偏高,且在出现问题时不易查找到准确的故障点。 采用改装通用型变频器的方法与采用分立元件组装相比,电源的可靠性要高很多,但并不是每一种变频器都适合用来改装。这主要是因为通用型变频器是为控制交流电机而设计的,并不适于用作电磁搅拌电源。 vacon公司的nxp系列变频器,与同类变频器相比较,更为适合改装成电磁搅拌用的变频电源。

电磁搅拌技术在连铸中的应用

电磁搅拌技术在连铸中的应用 近年来,连铸坯的质量越来越受到重视,因而围绕提高连铸坯质量的研究工作也取得了很大的进展。电磁搅拌技术是电磁流体力学在钢铁工业中最成功的应用之一。通过定量认识电磁场在多层介质中的传递,控制连铸过程中钢水的流动、传热和凝固,进而降低钢水的过热度、去除夹杂从而扩大等轴晶区,减少成分偏析,减轻中心疏松和中心缩孔。几十年来,国内外学者对电磁搅拌技术进行了大量的理论及实验研究,并应用于工业生产。电磁搅拌技术已经成为连铸过程中改善铸坯质量的最重要和最有效的手段之一。 1国内外电磁搅拌技术的发展概况 磁流体力学是电磁学,流体力学以及热力学相互交叉的学科,简称MHD(magnetohydrodynamics),主要研究电磁场作用下,导电金属流体的运动规律。在磁场里,导体的运动产生电动势,从而产生感应电流,导体本身也产生磁场。液态金属作为载流导体,在外加磁场的作用下产生了电磁力,这种电磁力的作用促使载流液体流动,同时伴随着三种基本的物理现象——电磁热,电磁搅拌,电磁压力。这三种现象在材料的冶炼、成形、凝固等工艺中已广泛应用。 连铸钢液电磁搅拌技术已经历几十年的试验研究和发展的过程。早在上世纪50年代,就由在德国Schorndorf和Huckingen半工业连铸机上。进行了首例连续铸钢电磁搅拌的试验。60年代,在奥地利Kapfenberg厂的Boehler连铸机上用于浇铸合金钢。60年代末一些工作者还进行了结晶器电磁搅拌和二冷区电磁搅拌的实验。1973年法国的一家工厂率先在其连铸机上安装了电磁搅拌器并投入工业应用,从而奠定了连铸电磁搅拌技术工业应用的基础。1977年,法国的Rotelec公司开发了小方坯和大方坯结晶器电磁搅拌器并以Magnetogyr-Process 注册商标,将其商品化。1979年,法国钢研院又在德国Dunkirk厂板坯连铸机上采用了线性搅拌技术,取得良好效果。进入80年代后,电磁搅拌技术发展更快,特别是日本,发展更为迅速。在神户钢铁公司的加古川厂,开发应用了线性马达型电磁搅拌器来控制结晶器内钢水流动的工艺。日本住友金属工业公司也相继提出并采用了静磁场通电型电磁搅拌技术,用作板坯二冷区的电磁搅拌。日本川崎公司也和瑞典ASEA公司共同开发了新的搅拌技术,并在川崎公司水岛钢铁厂的5号板坯连铸机上进行了实验,收到了良好的冶金效果。 国内连铸电磁搅拌技术的应用比国外相对较晚。自1986年武钢公司从联邦德国引进ORC.1600型电磁搅拌装置(EMS)安装在二炼钢三号铸机的二冷段,用于改善连铸板坯的宏观组织,增加等轴晶率,减少铸坯中心偏析疏松及铸坯内裂等缺陷,以期实现改善钢坯质量,扩大浇铸品种的目的才开始了我国电磁搅拌技术的工业应用。最初只在少数钢铁厂采用电磁搅拌技术如:重庆三厂、洛钢、

凝固末端电磁搅拌器设计及应用

凝固末端电磁搅拌器设计及应用 岳阳中科电气有限公司李爱武、蒋海波 天津钢管集团有限公司姚家华、刘强 1.概述 连铸电磁搅拌能有效地改善连铸坯内部的组织结构,减少中心偏析及中心缩孔,大大增加等轴晶率。已成为连铸、特别是品种钢连铸必不可少的一种工艺手段。 连铸电磁搅拌的实质在于借助电磁力的作用来强化铸坯中末凝固钢液的运动,从而改变钢水凝固过程中的流动,传热和迁移过程,达到改善铸坯质量的目的。 结晶器电磁搅拌可以明显改善中碳钢、中低合金钢的内部及皮下质量,但对于高碳钢和高合金钢来说,仍存在中心偏析、中心缩孔、中心裂纹等问题,甚至在所谓的糊状区终点处形成“V”形槽即“V”形宏观偏析。尤其对于象不锈钢这样的多合金高合金钢,由于枝晶发达中心裂纹及缩孔非常明显。要解决这些问题必须在凝固末端上电磁搅拌。 2.高碳钢、高合金钢连铸的凝固特征和可能出现的缺陷 高含碳量、高合金含量有使凝固组织恶化的趋势。高碳钢、高合金钢的液相与固相间温度区间较大,凝固间隙长度增加,粘稠区加宽。因此容易形成中心偏析、中心裂纹和中心缩孔。这些缺陷对产品的机械性能和耐腐蚀性能会产生有害的影响。在不锈钢冷轧板中出现单相波纹。 宏观偏析是在凝固末端粘稠区内的溶质富集的钢液由于凝固收缩引起流动、沿粘稠区内枝晶间通道传输、聚集而成的。显然它极大地受粘稠区内钢液流动和传质所控制,有时形成中心偏析,有时形成V形偏析。中心偏析是由于铸坯在凝固过程中倾向于生成柱状晶,产生搭桥现象而产生的。V形偏析形成的原因比较复杂,主要是由粘稠区内等轴晶凝固时产生的收缩力及对钢液的抽吸力和钢液沿树枝晶的渗透引起的,可以用著名的V形偏析凝固模型来解释。偏析的严重程度与凝固时间有关,时间越长越严重。由于高含碳量、高合金含量的钢凝固时间长,因此偏析也就更严重。 3.影响凝固末端电磁搅拌的冶金效果的主要因素及措施 影响凝固末端电磁搅拌的冶金效果的主要因素在于:1)是否有结晶器电磁搅拌作用。2)电磁搅拌器能否提供足够大的电磁推力。3)电磁搅拌作用区域内磁场是否均匀。4)电磁搅拌的作用区域是否足够大。5)搅拌的时机即电磁搅拌的安装位置是否得当。其中第2、3、4个因素取决于凝固末端电磁搅拌器的参数及结构设计,而第1、5个因素则取决于电磁搅拌器与连铸机性能参数及连铸工艺的匹配是否合理。因此,一套电磁搅拌装置要达到最佳的冶金效果,除了要求其本身性能优良外,还要求设计者有较丰富的理论与实践经验。

钢铁工艺连铸工艺中电磁技术的应用

【钢铁工艺】连铸工艺中电磁技术的应用近年来,电磁制动与电磁搅拌技术在我国钢铁行业应用广泛,是连铸工艺体系的重要组成部分,电磁技术的应用有助于解决结晶器内钢水过热、铸坯等轴晶率不足、结晶器液面不稳、铸坯夹杂物含量高等工艺难题,进一步提升了产品质量。基于此,为切实满足日益提高的连铸工艺要求与生产需求。 今天我们就给大家介绍一下连铸工艺体系中电磁制动、电磁搅拌两项技术的发展历程、作用原理与注意事项,并探讨技术应用措施。 电磁制动技术一发展历程 电磁制动技术理念早在20世纪八十年代便被日本川崎公司与瑞典ABB公司提出,水岛钢厂等项目中得到应用实施,有助于提高产品质量与生产效率,但第一代电磁制动技术却存在着电磁极间距不易控制的缺陷不足,实际制动效果并不理想。对于第一代电磁制动设备而言,设备空间极为狭小,这就对设备中的各类元件提出了更高的要求。当设备内部元件体积过大时,将会使各元件的作用无法得到发挥。此外,还会使铸坯厚度大大增加。针对此类问题,两家公司陆续推出单条型电磁制动、双条型电磁制动、全幅两段与三段电磁制动等全新技术。例如,双条形电磁制动技术应用期间会生成两个位置不同的磁场,各磁场能够相互制约、促进,且方向相反,发挥着不同的功能,这使得制动效果得到明显改善,电磁制动技术逐渐具备了大规模应用推广的技术条件,得到国内外钢铁企业的广泛应用。虽然我国该领域研究发展起步晚,但相关技术人员正积极应用信息技术提高该领域整体发展水平。

电磁制动技术一作用原理 在连铸工艺体系中,电磁制动是一项装置通电条件下通过形成静态磁场来引导结晶器内钢水沿特定方向流动、控制钢水流速和抑制涡流的技术手段,起到稳定结晶器液面、提高弯月面温度、降低钢水夹杂物含量等多重作用,具体如下:其一,稳定结晶器液面。在磁场制动力作用下来维持液面状态,避免因液面波动幅度过大出现拉漏、重熔、坯壳残留过量保护残渣的问题,或是因液面波动量不足而影响到保护渣融化、润滑效果。其二,提高弯月面温度。在制动力作用下,保持结晶器内钢液的上下分开内流动状态,起到控制流体传热速率、避免下部钢水冷却对上部流体造成过度影响的效果,同时,还可以通过电磁制动来保持下部循环流回路的最佳尺寸。在电磁制动技术应用前后,弯月面部位温度平均提升5-10C。。其三,降低钢水夹杂物含量。在钢液靠近磁场时形成感应电流,在电流、磁场共同作用下形成制动力,通过分配钢水主流股的方式来缩短夹杂物运动路径、实现夹杂物上浮分离目标。 电磁制动技术一技术应用注意事项 首先,在装置选型设计环节,钢厂根据实际生产情况来明确技术应用目标,围绕目标来设定电磁制动装置的性能指标要求。例如,我国鞍钢股份稣鱼圈钢铁分公司以改善钢液流动状态为技术目的,在板坯连铸机结晶器内配置2对制动装置,该装置采取全幅二段电磁制动技术,装置由4个线圈、铁芯与磁极等部分组成,铸坯断面尺寸为(170-230)X(750-1450),在结晶器两侧宽面分别布置2个线圈,对上下端线圈采取电流独立控制方式,从而在水口下方与弯月面部位形成下段、上段磁场,下段磁场负责控制水口处向外吐出的钢水流速,上段磁场负责

电磁搅拌技术在炼钢连铸机中的应用技术

电磁搅拌技术在炼钢连铸机中的应用技术 随着社会经济与科学技术不断的发展与完善,对连铸坯的质量提出了更高要求。最近几年,建筑行业得到迅猛发展,人们越来越重视连铸坯的质量。电磁搅拌技术在建筑领域中的应用进一步提高了连铸坯的质量,并且对于降低杂物质量和促进成分融合具有至关重要的作用。磁场相互作用产生电磁力,对钢水起到搅拌作用。是通过恒定磁场与运动的导电钢水相互作用,在钢水中产生感应电流,感应电流与磁场相互作用产生电磁力,此电磁力的方向恰好与钢水的运动方向相反,对钢水起制动作用,因此这种搅拌被称为电磁制动。文章从多个角度就电磁搅拌技术在炼钢连铸机中的应用进行探究。 标签:电磁搅拌技术;连铸机;应用技术 随着钢管连铸生产需求不断增加,我国对电磁搅拌连铸工艺的理论研究与实践研究不断加大,并且在各个领域中得到广泛应用。超纯净钢的开发与应用对铸坯的质量与凝固组织提出了更严格的要求,电磁搅拌技术以其独特被广泛应用,对社会生产生活以及社会经济发展具有积极的促进作用。 1、电磁搅拌技术原理 电磁搅拌的工作原理主要是依靠磁场,也就是说当电流变化时,线性感应电机的磁极和另一个极点会产生相同的电磁力,然后开始以恒定角速度切断熔金属,熔体内就会产生相应的感应电流。当前我国对电磁搅拌技术的理论研究与实践研究还不够成熟,由于多方面因素限制在生产过程中还存在一些问题,并没有发挥出应有的效能。从本质上来说,电磁搅拌技术就是使用电磁力迫使熔融金属产生平稳移动,减少外界因素对电磁场的影响。同时使凝固过程熔熔金属的温度与浓度保持均匀,如果在凝固过程中受到其他因素影响或者操作失误等原因导致熔融金属浓度与温度都不符合相应要求,则就降低凝固过程的形核功和临界核半径。只有保持熔融金属浓度与温度均匀化,才可以增加等轴晶的数量,最终实现晶粒细化的目的。根据磁场的工作形式,电磁搅拌可以分为直线型与旋转型,结合生产实际情况与生产需求,使用不同的电磁搅拌形式,从根本上保证铸坯内外部分的质量,一般情况下,直线型电磁搅拌磁场方向与坯材表面的宽度保持水平,也就是说在铁芯的定子绕组上连接交流电,通过金属液产生感应电流与电磁转矩,进而提高铸坯质量。 2、电磁制动的问题分析 随着科学技术与社会经济的飞速发展,对建筑行业的可持续发展提供了积极的推动力。随着社会生产生活对钢铁需求越来越多,对钢质量提出了更严格要求。钢水流动方式是保证钢质量的关键,也就是提高钢质量的重要内容,为了保证钢质量符合生产相应要求,必须采用内钢水的流动模式,这是目前保证板坯质量的最佳模式。由于在生产实践中会消耗大量的人力与物力,并且还需要强大的资金做支持,内钢水的流动模式可以简化生产流程,提高工作效率,但是对操作

常规板坯连铸机结晶器技术

常规板坯连铸机结晶器技术 【保护视力色】【打印】【进入论坛】【评论】【字号大中小】2006-12-07 11-07 杨拉道刘洪王永洪刘赵卫邢彩萍田松林 (西安重型机械研究所) 结晶器是连铸机中的铸坯成型设备, 是连铸机的核心设备之一。其作用 是将连续不断地注入其内腔的钢液通过水冷铜壁强制冷却,导出钢液的热量,使 之逐渐凝固成为具有所要求的断面形状和一定坯壳厚度的铸坯,并使这种芯部 仍为液相的铸坯连续不断地从结晶器下口拉出.为其在以后的二冷区域内完全 凝固创造条件。在钢水注入结晶器逐渐形成一定厚度坯壳的凝固过程中.结晶器 一直承受着钢水静压力、摩檫力、钢水热量的传递等诸多因素引起的的影响. 使结晶器同时处于机械应力和热应力的综合作用之下.工作条件极为恶劣.在此 恶劣条件下结晶器长时间地工作.其使用状况直接关系到连铸机的性能.并与铸 坯的质量与产量密切相关。因此.除了规范生产操作、选择合适的保护渣和避免 机械损伤外.合理的设计是保证铸坯质量、减小溢漏率、提高其使用寿命的基础 和关键。 板坯连铸机一般采用四壁组合式(亦称板式)结晶器.也有一个结晶器 浇多流铸坯的插装式结构。 结晶器主要参数的确定 1 结晶器长度H 结晶器长度主要根据结晶器出口的坯壳最小厚度确定。若坯壳过薄.铸 坯就会出现鼓肚变形.对于板坯连铸机.要求坯壳厚度大于10~15mm。结晶器长 度也可按下式进行核算: H=(δ/K)2Vc+S1+S2 (mm) 式中δ——结晶器出口处坯壳的最小厚度.mm K——凝固系数.一般取K=18~22 mm/min0.5 Vc——拉速.mm/min S1——结晶器铜板顶面至液面的距离.多取S1=100 mm S2——安全余量.S=50~100 mm 对常规板坯连铸机可参考下述经验:

电磁搅拌

电磁搅拌 电磁搅拌技术和应用效果目前已经比较成熟。对于大方坯和小方坯(>150mm,≤150mm)连铸,为了生产高质量铸坯和轧材,电磁搅拌是必须采取的措施,而且必须采取提高铸坯表面质量的结晶器电磁搅拌(M-EMS)和改善中心偏析的二冷电磁搅拌(S-EMS)的组合式搅拌。由于方圆坯断面积比板坯小,所以表面的清理损耗和工作量要比板坯大得多,因此提高方圆坯的表面质量的经济效益也比板坯大得多。M-EMS搅拌对提高铸坯表面质量有重要作用。其机理是:(1)液芯的运动均匀了内部钢水的温度,并使保护渣均匀熔化,因此形成振痕稳定和厚度均匀的坯壳并与结晶器壁接触良好;(2)液芯的流动冲洗使凝固壳内表层的夹杂和气泡上浮到液面中心,人工捞出可提高铸坯的表面质量和钢的纯净度。S-EMS搅拌的作用是大幅度减小铸坯表层细等轴晶内侧的柱状晶厚度,使其变成等轴晶,从而可以明显降低中心偏析和疏松。这对最终成品圆钢和线材的质量判定和二次加工性带有决定性。为了消除轧材的柱状晶,不使用S-EMS的铸坯压缩比约在10左右,而采取S-EMS的压缩比为5时就可以达到。因此采用S-EMS也可以使用较小尺寸的铸坯生产较大规格的成品,或在同等条件下进一步提高轧材的强度、塑性和冲击性。中心偏析产生的原因是铸坯在凝固过程中碳、硫、磷、锰等溶质(含非金属夹杂物及气相等轻质相)元素的浓度逐渐增高的结果,因此S-EMS的作用机理是铸坯出结晶器后,利用电磁的作用使液芯钢水在转动的过程中凝固,这样,一方面使溶质元素分布均匀,改善中心偏析度;另一方面,由于钢水的转动冲刷凝固的前沿,使已成固态的微粒变成新的结晶核,因此扩大了等轴晶比率,相对减少了柱状晶量。M-EMS与S-EMS组合式电磁搅拌可以适应优质钢和不锈钢的质量需要,但是对于碳含量>0.50%的高碳钢和弹簧钢等钢种,为了解决芯部碳的偏析,应在铸坯凝固末期对糊状钢液进行电磁搅拌,即F-EMS。 电磁搅拌的原理,以电磁感应原理为基础,闭合电路的一部分导体在磁场中运动会产生电流,带电的导体在磁场中运动会产生阻碍其运动的电磁力。在结晶器内安装电磁搅拌,使钢水形成与之运动相反方向的力。 电磁搅拌分为螺旋搅拌、直线搅拌、旋转搅拌。直线搅拌使钢水产生上下的运动;旋转搅拌使之产生水平方向的运动;螺旋搅拌即能产生水平方向也能产生竖直方向的运动。目前中小方坯使用旋转搅拌,板坯使用直线旋转和螺旋旋转。 连铸机上电磁搅拌安装的位置一般有三处:1、结晶器电磁搅拌(M-EMS或E-MBR)2、二冷区电磁搅拌(S-EMS)3、凝固末端电磁搅拌(F-EMS)。 结晶器电磁搅拌的安装,线圈位置安装偏下,防止旋转钢液将表面保护渣卷入钢中。有些结晶器还在搅拌线圈上安装一个能使钢液向相反方向运动的制动线圈(线圈通电方向与搅拌线圈方向相反)。为保证有足够的电磁力能穿透结晶器壁,使用低频电流,采用不锈钢或铝等非铁磁性物质作结晶器水套(铜)。结晶器电磁搅拌能够均匀钢水温度,减少钢水过热,促进气体和夹杂物的上浮,增加等轴晶晶核。 二冷区电磁搅拌安装在二冷区铸坯柱状晶“搭桥”之前,即坯壳厚度是铸坯的1/4处;其搅拌效果最好,也有利于减少中心疏松和中心偏析。一般情况下小方坯搅拌器安装在结晶器下口1.3-4m 处,采用旋转搅拌方式较多;大方坯和厚板坯可安装在离结晶器下口9-10m处,采用直线搅拌或旋转搅拌方式。当采用旋转搅拌时,为了防止在钢中产生负偏析白亮带,可采用正转-停止-反转(小方坯、大方坯、板坯、均采用此方法?)的间歇式搅拌技术。二冷区电磁搅拌主要用来获得中心宽大的等轴晶带,使晶粒细化,减少中心疏松和中心偏析,使夹杂物在横断面上分布均匀,从而使铸坯内部质量得到改善。 凝固末端电磁搅拌安装在连铸坯凝固末端,可根据液心长度计算出具体的安装位置。凝固末端电磁搅拌可使铸坯得到中心宽大的等轴晶带,消除或减少中心疏松和中心偏析。对于高碳钢效果尤其明显。 结晶器电磁制动:在板坯连铸中,结晶器内向下的流股将夹杂物带入铸坯液相穴深处难于上浮;同时热中心下移造成坯壳重熔和发生角裂,水口外壁附近钢液容易凝结,保护渣不能均匀流动等。为此在结晶器宽面加两个恒定磁场,产生于注流方向相反的电磁力,对流股起到制动作用,

板坯连铸机结晶器内电磁搅拌技术

板坯连铸机结晶器内电磁搅拌技术 摘要:连铸电磁搅拌技术在冶金工业中的应用可以提高钢坯的质量,降低成本消耗,提高连铸钢的等级,降低了芯部收缩,避免了芯部偏聚,改善了铸锭内等轴晶粒。因此,将电磁搅拌技术引入到炼钢生产中,将大大提升炼钢产品的品质,为炼钢工业带来新的生机。今后,工业计算机控制技术将与连铸电磁搅拌技术、冶金技术、信息技术等相融合,开拓冶金产业发展新方向,逐渐实现了电磁搅拌的可视化和自动化。同时,要充分利用新设备和新技术,大力研发新设备和新技术,以增加产品的技术含量和产品的使用效率;节能减排,节能增效,高质量钢铁产品的产量不断增加,为中国钢铁行业与国际接轨做出了重要贡献。 关键词:板坯连铸机;结晶器;电磁搅拌技术 引言 连铸坯的中心偏析、夹杂物和中心收缩是连铸坯的关键问题,严重影响连铸坯的内部质量。电磁搅拌是最常用的连铸技术,它可以通过电磁力优化和消除模具中钢水的过热。电磁搅拌后,坯料的等轴晶粒率显著提高,使坯料固化良好,提高了产品性能。本发明可以有效地解决连铸坯的中心收缩和清洁度问题。 1结晶器电磁搅拌及连铸坯概述 连铸坯是由钢水通过连铸机制成的坯段。连铸技术可以简化从钢水到钢坯的整个生产过程,而无需连铸。因此,连铸坯具有生产成本低、金属获取率高、劳动条件好等一系列优点。目前,连铸坯已成为轧制生产的重要原料。但是连铸坯也存在一些缺陷。例如,一般孔隙率、中心孔隙率、一般点偏析、皮下气泡、铸锭偏析、边缘偏析、内部气泡、残余收缩、剥落、白点、轴向晶体裂纹、非金属夹杂物和芯部裂纹。在低倍率检查中,可能会出现中心气孔、收缩、中心偏析、表面角裂纹和表面边缘裂纹等缺陷。

电磁搅拌是通过在铸坯液空腔中产生的电磁力来强化钢液在空腔中的移动, 进而强化了钢液的传热、对流和传质,进而实现对铸坯的凝结进程的控制,这对 改善铸坯的品质具有重要的意义。目前,模具电磁搅拌是最常见的设备,适用于 各种连铸机。它可以改善钢坯的表面质量,细化晶粒尺寸,减少钢坯的夹杂物和 中心孔隙率。一般情况下,为了避免影响自动液位控制装置的使用,通常安装在 模具的下部。电磁搅拌在结晶器中的作用如下:首先,提高钢坯的表面质量。坯 料的表面在模具下固化。搅拌器可以放置在模具的弯月面上,以便在凝固开始前“清洁”坯料表面。其次,提高钢坯的内部质量。它可以增加等轴晶面积,细化 晶粒尺寸,减少中心孔隙率,减少中心偏析,甚至消除白带现象。在使用模具电 磁搅拌时,应注意以下几点:首先,模具粉末可能会缠绕在它们之间,导致坯料 中有更多的夹杂物。在结晶器中进行电磁搅拌可以有效地提高钢坯的质量,提高 搅拌强度效果更显著。但也有必要将强度控制在一个固定的范围内。如果强度过高,会导致坯料中出现夹杂物结晶器粉末,从而增加夹杂物的数量,并产生负面 影响。同时,电磁搅拌也是影响模具液位检测效果的直接因素。目前,为了解决 这一问题,人们广泛使用减少搅拌线圈的安装位置,但这也限制了电磁搅拌在模 具中的冶金效果,难以通过电磁搅拌改善高碳钢的中心碳偏析。尽管模具中的电 磁搅拌可以大大降低中心偏析的偏差和峰值,但中心偏析的平均值没有明显变化。因此,很难通过电磁搅拌从根本上改善模具中碳的中心偏析。 2连铸电磁搅拌的分类 1)连铸电磁搅拌可分为结晶器电磁搅拌(M-EMS)、二次冷却电磁搅拌(S-EMS)、端部电磁搅拌(F-EMS)及其组合。在这三种混合形式中,M-EMS是提高 板坯质量最有效的方法。S-mes是最早发明的搅动形式。随着连铸技术的发展, 仅使用S-EMS或者M-EMS已经不足以满足高质量产品中的要求。在生产中,经常 采用结晶器、二次冷却区和凝固终点的混合搅拌方法。 2)结晶器电磁搅拌的分类 (1)根据钢的流动方向,连铸电磁搅拌可分为旋转搅拌、线性搅拌和螺旋 搅拌。方形、圆形和异形钢坯采用旋转搅拌,而长宽比较大的板坯和矩形钢坯采 用线性电磁搅拌。

连铸工艺详解

连铸工艺详解 连铸的生产工艺流程:将装有精炼好钢水的钢包运至回转台,回转台转动到浇注位置后,将钢水注入中间包,中间包再由水口将钢水分配到各个结晶器中去。结晶器是连铸机的核心设备之一,它使铸件成形并迅速凝固结晶。拉矫机与结晶振动装置共同作用,将结晶器内的铸件拉出,经冷却、电磁搅拌后,切割成一定长度的板坯。 连铸钢水的准备 一、连铸钢水的温度要求: 钢水温度过高的危害:①出结晶器坯壳薄,容易漏钢;②耐火材料侵蚀加快,易导致铸流失控,降低浇铸安全性;③增加非金属夹杂,影响板坯内在质量;④铸坯柱状晶发达;⑤中心偏析加重,易产生中心线裂纹。 钢水温度过低的危害:①容易发生水口堵塞,浇铸中断;②连铸表面容易产生结疱、夹渣、裂纹等缺陷;③非金属夹杂不易上浮,影响铸坯内在质量。 二、钢水在钢包中的温度控制: 根据冶炼钢种严格控制出钢温度,使其在较窄的范围内变化;其次,要最大限度地减少从出钢、钢包中、钢包运送途中及进入中间包的整个过程中的温降。 实际生产中需采取在钢包内调整钢水温度的措施: 1)钢包吹氩调温 2)加废钢调温 3)在钢包中加热钢水技术 4)钢水包的保温 中间包钢水温度的控制 一、浇铸温度的确定 浇铸温度是指中间包内的钢水温度,通常一炉钢水需在中间包内测温3次,即开浇后5min、浇铸中期和浇铸结束前5min,而这3次温度的平均值被视为平均浇铸温度。 浇铸温度的确定可由下式表示(也称目标浇铸温度): T=TL+△T 。 二、液相线温度: 即开始凝固的温度,就是确定浇铸温度的基础。推荐一个计算公式:

T=1536-{78[%C]+7.6[%Si]+4.9[%Mn]+34[%P]+30[%S]+5.0[%Cu]+3.1[%Ni]+1.3[%Cr]+3.6[%Al]+2. 0[%Mo]+2.0[%V]+18[%Ti]} 三、钢水过热度的确定 钢水过热度主要是根据铸坯的质量要求和浇铸性能来确定。 钢种类别过热度 非合金结构钢 10-20℃ 铝镇静深冲钢 15-25℃ 高碳、低合金钢 5-15℃ 四、出钢温度的确定 钢水从出钢到进入中间包经历5个温降过程: △T总=△T1+△T2+△T3+△T4+△T5 △T1出钢过程的温降; △T2出完钢钢水在运输和静置期间的温降 (1.0~1.5℃/min); △T3钢包精炼过程的温降(6~10℃/min); △T4精炼后钢水在静置和运往连铸平台的温降(5~1.2℃/min); △T5钢水从钢包注入中间包的温降。 T出钢 = T浇+△T总 控制好出钢温度是保证目标浇铸温度的首要前提。具体的出钢温度要根据每个钢厂在自身温降规律调查的基础上,根据每个钢种所要经过的工艺路线来确定。 拉速的确定和控制 一、拉速控制作用: 拉速定义:拉坯速度是以每分钟从结晶器拉出的铸坯长度来表示。拉坯速度应和钢液的浇注速度相 一致。拉速控制合理,不但可以保证连铸生产的顺利进行,而且可以提高连铸生产能力,改善铸坯的质量.现代连铸追求高拉速。 二、拉速确定原则: 确保铸坯出结晶器时的能承受钢水的静压力而不破裂,对于参数一定的结晶器,拉速高时,坯壳薄;反之拉速低时则形成的坯壳厚。一般,拉速应确保出结晶器的坯壳厚度为12-14mm。 影响因素:钢种、钢水过热度、铸坯厚度等。

电磁搅拌器电控系统原理

电磁搅拌器电控系统原理 电磁搅拌器电控系统主要体现在应用了高智能、高精度的智能型 PWM(脉宽)波形产生集成电路,其载波频率可达20KHZ,从而 获徒刑较理想的输出波行。外接EEPROM编程、模拟信号输入, 便于实现连续调整参数。大功率器件采用先进的智能电源模块, 适应于20千赫开关频率,模块本身具有较完善的保护功能。在 整体控制上采用工业计算机,功能强大、强靠边性高、通用性好, 它不仅具有PLC逻辑控制功能,更具有数据处理功能,实现系统 控制、图形、文字、工况显示和故障报警。 特点: 1、IPM智能电源模块本身具有短路、过流、过热、欠压保护功 能,系统设计中又增设了可靠的缓冲电路和其他抗干扰电路。 2、工业计算机能适应于恶劣的工业现场,数据采集准确,处理 速度快。 3、开关、接触器、整流、滤波、缓冲电路等电子器件,一律选 用进口无器件,在设计中选用了较大的耐压、过流、散热保护系 数。 4、在结构设计和制造方面尽量做到减少分布电容、电感和提高 抗辐射,感应和耦合干扰的能力。 5、参数和程序设计严密,系统投入和停机逻辑,能较好的防止 误码操作和事故停电造成的系统损坏。 基本功能: 1、具有手动、自动、本机、远控功能(可根据用户需要设置)。 2、电流、频率在设定的工作范围内无级边疆调节,互不影响(精度根据用户需要确定)。 3、详细工况、参数、故障显示设置在下位工控制机上,参数调整也由下位机完成,上位机可作监视和紧急操作之用。 4、电流和频率变化数据除了计算机图象显示外,可以存贮,供分析,参考调出。 5、故障分为停系统故障停搅拌故障和报警故障三类。 A、停系统故障: 。。包括变压器瓦斯保护动作,冷却风机失灵,IPM模块故障,整流熔断器故障,主接触器和主空气断路故障,控制电源故障等。 B、停搅拌故障: 。。包括:冷却水严重不足,搅拌器绕组严重过热,冷却风机停。 C、报警故障: 。。包括:变压器过热,水流量、水压不足,过流、欠压三相电流不平衡等。 型号说明 订购电磁搅拌器时,请您提供以下资料,以便设备 设计。 ?连铸机型式 ?钢种 ?铸坯断面 ?铸坯拉速 ?安装位置及最大安装空间 ?电控水平要求 ?其它特殊要求 凡我公司提供的电磁搅拌装置(含修理、改造),

电磁搅拌技术的应用

电磁搅拌技术的应用标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电磁搅拌的应用 材料与冶金学院冶金工程2012—4 侯虎兴 摘要:电磁搅拌是广泛应用连铸生产的技术,通过产生的电磁力,改善消除结晶器内钢水的过热度,可提高铸坯的等轴晶率,得到良好凝固组织的铸坯,从而改善成品的性能。 关键词:电磁搅拌过热度等轴晶 1 前言 电磁搅拌器(简称EMS)是由瑞典ASEA公司首先提出的,1932年Dreyfus博士从法拉第的电磁感应原理中发现,低速移动着的感应磁场能在钢水中产生强力的搅拌作用,并与Sandvik厂合作,于1948年研制成第一台用于电弧炉炼钢的电磁搅拌器,后来该技术逐渐应用于感应熔炼炉、钢包精炼炉和连铸机。电磁搅拌应用于连续铸钢是连铸技术最重要的发展之一。 2 电磁搅拌的作用原理 电磁搅拌的实质就是借助在铸坯的液相穴内感生的电磁力强化液相穴内钢水的运动,由此强化钢水的对流、传热和传质过程,从而控制铸坯的凝固过程,对提高铸坯质量具有积极的作用。 连铸坯液相穴内钢水对流运动对消除过热度、改善铸坯凝固组织和成分偏析等有重大影响。而钢水流动的驱动力来自铸流的动能和外力,前者与浇注方式有关,后者则可以在液相穴的任何位置上外加电磁力即使用电磁搅拌,而后者的影响要远甚于前者。 3 电磁搅拌器的类型 用于连铸过程的电磁搅拌器按其安装的位置,有如下几种:

(1) 中间包加热用电磁搅拌器HEMS:该种电磁搅拌使连铸过程中的钢水温度在液相线温度以上30℃或40℃,使中间包二次冶金的效果更佳。 (2) 结晶器电磁搅拌器MEMS:是目前各种连铸机都适用的装置,它对改善铸坯表面质量、细化晶粒和减少铸坯内部夹杂及中心疏松有明显的作用,应用最为广泛。为不影响液面自动控制装置的使用,一般安装在结晶器的下部。 (3) 二冷段电磁搅拌器SEMS:又可分为二冷一段电磁搅拌器S1EMS和二冷二段电磁搅拌器S2EMS。S1EMS安装在结晶器一段的足辊处,其功能与MEMS类似,两者不重复使用,由于其更换、维修方便,因此其投资和运行成本比较经济。S2EMS是促进铸坯晶粒细化的有效手段,一般与MEMS或S1EMS一起使用。 (4)凝固末端电磁搅拌器FEMS:一般在浇注对碳偏析有严格要求的含碳高的钢种时采用,为保证搅拌效果,其安装位置要靠近凝固末端,一般在液芯直径为Φ60-80mm处为佳,并允许调节。 4 电磁搅拌在典型钢种生产中的应用[1] 不锈钢 对于铁素体不锈钢SUS430,等轴晶率与冷轧板皱折的发生有很大关系,当等轴晶率大于等于50%时,可有效防止皱折的发生,通过使用S-EMS达到这种效果,图1所示过热度与等轴晶率的关系。图中可看出,使用S-EMS可在很大程度上放宽对浇注温度的限制要求。 图1 中间包内钢水的过热度与等轴晶率的关系 电工钢

电磁搅拌器发展及应用现状

电磁搅拌器的调查报告

目录 第1章电磁搅拌器的简介1 1.1定义1 1.2 原理1 1.3 安装模式及分类1 1.4.2 SEMS 扩大等轴晶率 (2) 1.4.3 FEMS 细化等轴晶 (2) 第2章电磁搅拌器的开展2 2.1 电磁搅拌技术在国外的开展和应用情况3 2.2 电磁搅拌技术在中国的开展和应用现状5 第3章电磁搅拌器的应用7

第1章电磁搅拌器的简介 1.1定义 电磁搅拌器,是炼钢行业中的一种机器,具有强化钢水运动和推动钢水运动的能力。 1.2 原理 电磁搅拌器〔Electromagnetic stirring: EMS〕的实质是借助在铸坯液相穴中感生的电磁力,强化钢水的运动。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水,就在其中感应起电流,该感应电流与当地磁场相互作用产生电磁力,电磁力是体积力,作用在钢水体积元上,从而能推动钢水运动。 1.3 安装模式及分类 根据电磁搅拌器在铸机冶金长度上的不同安装位置大致有以下几种模式: 〔1〕结晶器电磁搅拌:Mold Electromagnetic stirring: M EMS 搅拌器安装在结晶器铜管外面。〔2〕二冷区电磁搅拌:St rand Electromagnetic Stirring: SEMS 搅拌器安装在铸坯外面。 〔3〕凝固末端电磁搅拌:Final Electromagnetic stirring: FEMS 用于方坯连铸搅拌器安装在铸坯外面。1.4 电磁搅拌器的冶金效果

表1 1.4.2 SEMS 扩大等轴晶率 表2 1.4.3 FEMS 细化等轴晶 第2章电磁搅拌器的开展 连铸是钢铁生产流程中的重要环节,钢材的质量在很大程度上取决于连铸坯的质量。生产实践说明,应用电磁搅拌技术能有效改善连铸坯的质量。从20世纪80年代开场,国外的电磁搅拌技术逐渐走向成熟。80年代中期,国在引进国外连铸机的同时,也引进了一批不同类型的电磁搅拌装置。但由于种种原因,许多钢厂电磁搅拌技术的应用并不理想,造成设备的闲置。与此同时,我国仍在继续引进国外的电磁搅拌技术0在这种情况下,有必要对现有连铸用电磁搅拌器的设

谈电磁搅拌技术在炼钢连铸机中的应用

谈电磁搅拌技术在炼钢连铸机中的应用 钢铁行业在近些年的开展可谓是突飞猛进,在剧烈竞争的国际市场中,我国钢铁行业的开展较为稳定。企业在生产中要对技术的应用严格控制,不仅要不断开展新技术的探索,同时也要重视对己存在并应用的技术进行创新。连铸电磁搅拌技术是一种重要的冶金技术,虽然在钢铁行业生产中较为成熟,但仍需要根据实际效果加以完善,从而提高钢铁制品的生产质量与效率。 1電磁搅拌技术的基木概述 1.1电磁搅拌技术的开展背景 在钢铁工业生产过程中,不同时期主要应用的技术手段也在不断发生变化,其中电磁搅拌技术的岀现就是由于钢铁生产所需而产生。这一技术最早源于瑞典,是根据电弧炉炼钢工作中的需要产生,经过对工艺的改良与创新,这一技术也在不断的成熟,最终被广泛应用于炼钢连铸机。连铸机在炼钢过程中发挥着不容无视的作用,这种工艺技术与传统炼钢相比更加简单易操作,能够有效防止一些繁琐的工序, 同时在最终的产品收得率中也有显著提升,所以逐步代替传统炼钢方法。炼钢连铸机在生产过程中不仅能够到达节约金属材料的目的,同时也能较大程度上节省人力资源。电磁搅拌技术作为在连铸机中应用的一种重要技术手段,经过多年在实际应用中的不断尝试与发现,各种类型的电磁搅拌器相继出现,它们的共同目标与任务就是控制钢液流动,从而使产品的质量与产出率在现有根底上得到提高,二冷区电磁搅拌器、结晶器电磁搅拌器以及固化终端电磁搅拌器等都是较为常用的类型。 1.2电磁搅拌技术的开展现状及主要应用 经过不断的完善与实际应用验证,电磁搅拌技术的理论研究方面己较为成熟,并在冶金工业中有着很高的应用价值。近些年在生产制造业中,产品质量标准正随着技术的强化而不断提升,同时客户对于产品质

连铸生产中的电磁搅拌技术

连铸生产中的电磁搅拌技术 随着连铸技术的应用和发展,连铸坯的质量越来越受到重视。近年来,超纯净钢的开发和应用对铸坯的质量、凝固组织和成分均匀化提出了更高的要求。电磁搅拌技术对提高铸坯的等轴晶率、细化凝固组织、降低夹杂物含量并促进成分均匀化、改善铸坯内部、表面和次表面质量具有重要作用。 1.电磁搅拌的工作原理 电磁搅拌的工作原理十分简单,如同由两相或三相电流驱动的、能产生交变磁场的线性感应马达。电流发生相变时,磁场从一极到达另一极,并同时产生电磁推力,将液态钢水向磁场运动的方向推动。这样,可以通过电流相位变化来选择方向,也可以通过电流密度和频率来调整推力大小。 2.电磁搅拌装置 2.1电磁搅拌装置的分类 电磁搅拌装置可分为水平旋转搅拌器和线性搅拌器两大类。而线性搅拌器又可细分为垂直、水平线性搅拌器。水平旋转搅拌器围绕铸流设置,其运转象一个异步旋转电机的定子,驱动钢液水平旋转,多用于园坯、方坯和小矩形坯。垂直线性搅拌器靠近铸流侧,其运转象一个线性异步电机的定子,钢水沿垂直方向旋转运动,适合于大断面的矩形坯;水平线性搅拌器安装在铸坯侧,其运转象一个平直定子,在板坯内弧侧熔池内产生水平方向的磁场,推动钢水运动。 2.2电磁搅拌装置的布置 电磁搅拌装置的布置位置有四种∶中间包加热用电磁搅拌(H—EMS)、结晶器电磁搅拌(M—EMS)、冷却段电磁搅拌(S—EMS)和凝固段电磁搅拌(F—EMS)。 ?H—EMS∶使连铸过程中钢水的过热度保持在30~40摄氏度,其突出特点是利用非金属夹杂物与金属液之间导电性的差异,实现两者的分离。1996年日本川崎制铁水岛厂在浇铸不锈钢时采用了此技术,生产的铸坯总氧含量低于0.001%,比采用传统中间包生产的铸坯减小2倍,夹杂物减少一半,不锈钢热轧和冷轧板卷缺陷减少了60%; ?M--EMS∶一般安装在结晶器下部,用于减少表面缺陷、皮下夹杂物、针孔和气孔,改善凝固组织,降低表面粗糙度,增加热送率,扩大钢种。适合于冷轧钢、弹簧钢、半镇静钢等钢种的浇铸;

电磁搅拌在钢水连铸中的应用

电磁技术在连铸中的应用 摘要:介绍了电磁技术的产生及开展,以及电磁技术在连铸过程中的应用,包括电磁搅拌、电磁制动、软接触电磁连铸技术,总结了前人的研究,分析了电磁连铸的优点与缺乏,以便连铸工作者们参考。 关键词:电磁搅拌连铸 1 前言 19世纪以来,钢铁工业出现了最重要的三大技术,连续铸钢就是其一。连续铸钢工艺的出现带来了节能降耗,降低生产本钱,减轻环境负荷,提高金属收得率,实现连铸连轧短流程生产工艺,还能净化钢液、改善铸坯的组织、细化晶粒、提高钢材成品的质量[1-2]。 目前世界上先进国家的钢铁连铸比几乎到达的100%,我国的钢铁企业总体连铸比也到达了95%以上[3]。刚成形的连铸坯要喷水冷却,在运动过程中具有很长的液相穴凝固过程,受钢水运动和传热两个根本物理现象所控制。液相穴钢水对流运动对减轻成分偏析、改善凝固组织和消除过热度有重大影响[4]。 对钢材质量要求日益严格的今天,炼钢技术也日益提高,作为提高钢材生产率的辅助手段,可以控制钢液流动状态的电磁力在冶金中得到越来越广泛的应用[5]。 电磁流体力学(MHD)是电磁冶金理论的根底,它的开展,带动了电磁连铸技术在冶金工业中的应用和开展。电磁搅拌最早应用于钢铁的连铸工艺中[6],主要是由于熔融金属是电的良导体,在磁场和电流作用下,金属熔体产生电磁力,利用电磁力就可以对熔融金属进展非接触性搅拌、传输和形状控制。电磁冶金技术具有能量的高密度性和清洁性、优越的响应性和可控性、易于自动化以及能量利用率高等特点,被广泛地应用于冶炼、精炼、铸造、连铸、钢水的检测等领域,并已在许多领域取得了重大进展[7]。在冶金中应用电磁场力,一是应用电磁感应热,如熔炼金属;二是应用其搅拌力以改善材料的性能[8-9]。 2 电磁搅拌 2.1 电磁搅拌简介 电作用产生电磁力,该电磁力推动钢水运动,从而控制铸坯的凝固过程,到达增大等磁搅拌的实质是借助借助在铸坯液相穴中感生的电磁力,强化钢水的运动[10]。具体地说,搅拌器激发的交变磁场渗透到铸坯的钢水,就在其中产生感应电流,感应电流与当地磁场相互轴晶率,改善铸坯外表、皮下和部质量的目的[4]。 电磁搅拌技术可以大幅度提高钢的清洁度,减小皮下气孔,扩大铸坯的等轴晶区,降低成分偏析和过热度,减少钢水中的夹渣,减轻或消除金属的中心疏松和中心缩孔的现

连铸电磁搅拌

1.什么叫电磁搅拌(简称EMS)? 大家知道,一个载流的导体处于磁场中,就受到电磁力的作用而发生运动。同样。载流钢水处于磁场中就会产生一个电磁力推动钢水运动,这就是电磁搅拌的原理。 电磁搅拌是改善金属凝固组织,提高产品质量的有效手段。应用于连续铸钢, 已显示改善铸坯质量的良好效果。 早在1922年就提出了电磁搅拌的专利。论述了流动对金属结构、致密性、偏析和夹杂物等方面的影响。1952年开始在钢厂连铸机二次冷却区装置电磁搅拌的 试验。随着连铸技术的发展,为改善连铸坯质量,人们对电磁搅拌结构、类型、搅拌方式和冶金效果进行广泛深入研究,使电磁搅拌技术日益成熟,得到了广泛的应用。 2.电磁搅拌器有哪几种类型? 电磁搅拌器型式和结构是多种多样的。根据铸机类型、铸坯断面和搅拌器安 装位置的不同,目前处于实用阶段的有以下几种类型。 (1)按使用电源来分,有直流传导式和交流感应式。 (2)按激发的磁场形态来分,有:恒定磁场型,即磁场在空间恒定,不随时间变化;旋转磁场型,即磁场在空间绕轴以一定速度作旋转运动;行波磁场型,即磁场在空间以一定速度向一个方向作直线运动;螺旋磁场型,即磁场在空间以一定速度绕轴作螺旋运动。 目前,正在开发多功能组合式电磁搅拌器.即一台搅拌器具有旋转、行波或螺 旋磁场等多种功能。 (3)按使用电源相数来分,有两相电磁搅拌器,三相电磁搅拌器。

(4)按搅拌器在连铸机安装位置来分,有结晶器电磁搅拌器、二次冷却区电磁搅拌器、凝固末端电磁搅拌器。 3.电磁搅拌技术有何特点? 与其他搅拌钢水方法(如振动、吹气)相比,电磁搅拌技术有以下特点: (1)通过电磁感应实现能量无接触转换,不和钢水接触就可将电磁能转换成钢水的动能。也有部分转变为热能。 (2)电磁搅拌器的磁场可以人为控制,因而电磁力也可人为控制,也就是钢水流动方向和形态也可以控制。钢水可以是旋转运动、直线运动或螺旋运动。可根据连铸钢钢种质量的要求,调节参数获得不同的搅拌效果。 (3)电磁搅拌是改善连铸坯质量、扩大连铸品种的一种有效手段。 4.什么叫结晶器电磁搅拌(简称M--EMS),有何作用? 结晶器电磁搅拌器特点:钢水在结晶器内,搅拌器置于结晶器外围。搅拌器内的铁芯所激发的磁场通过结晶器的钢质水套和铜板渗入钢水中,借助电磁感应产生的电磁力,促使钢水产生旋转运动或上下垂直运动。 结晶器铜板的高导电性,使用工频(50Hz)电源,由于集肤效应,磁场在铜层厚度由外向里穿透能力只有几毫米,小于铜壁的厚度,也就是磁场被结晶器铜壁屏蔽不能渗入钢水内,无法搅拌钢水。为此采用低电源频率(2~10Hz),使磁场穿过铜壁搅拌钢水。 结晶器电磁搅拌作用:1)钢水运动可清洗凝固壳表层区的气泡和夹杂物,改善了铸坯表面质量。2)钢水运动有利于过热度的降低,这样可适当提高钢水过热度,有利于去除夹杂物,提高铸坯清洁度。3)钢水运动可把树枝晶打碎,增加等轴晶核心,

相关文档
相关文档 最新文档