文档库 最新最全的文档下载
当前位置:文档库 › 高端通用芯片--CPU篇

高端通用芯片--CPU篇

高端通用芯片--CPU篇
高端通用芯片--CPU篇

高端通用芯片—CPU篇

我国CPU发展现状

国内已开启多技术路线并行的CPU技术产业新格局。在国家科技重大专项和国家级集成电路产业投资资金的推动之下,我国CPU产品技术研发已进入多技术路线同步推进的高速发展阶段,并因发展模式和技术特性的不同而呈现出不同的发展特色,其中:

x86体系由intel封闭主导,国内企业通过商业合作进行CPU产品和部分技术的研发。Intel独揽x86 CPU的基础架构、芯片设计、工艺制造三大环节并封闭发展,目前已积累了超过1.7万件CPU相关专利。在硬件层面,不仅掌控与北桥CPU配套的南桥芯片组外围接口、GPU等核心技术,也主导着与x86相关的标准技术和测试认证,例如内存条接口、硬盘接口以及PCIe总线接口等;在软件层面,与微软结成“Wintel”联盟形成长期相互协同的利益闭环,众多应用厂商围绕

x86+windows体系开发产品。我国的兆芯和曙光分别通过与威盛和AMD的商业合作进行x86 CPU的研发,其中兆芯已推出3代CPU产品,并形成了完整的芯片组解决方案,在操作系统层面除兼容windows和linux外,也联合方德、中标、普华等多家国内企业展开适配;曙光联姻AMD加快在服务器领域的布局,自研安全加密模块替代原有AMD的安全部分,提升安全保障能力,预计相关产品今年底实现正式商用。

ARM体系以开放共赢为基本原则,国内企业在获得技术授权的基础上进行芯片架构和芯片设计的研发。ARM公司是ARM生态的主导者和核心规则的制定者,通过基础架构授权、IP核授权等方式获得经济收益。芯片设计企业基于ARM授权的基础架构/IP核进行芯片研发,降低了研发的难度、风险和成本,与ARM公司形成互惠互利的合作伙伴关系。而生态系统中大量的上下游软硬件企业则遵循ARM统一制定的标准规范,对接众多客户需求而实现经济利益获取。国内基于ARM 生态的CPU产业已有较好基础,华为海思、展讯、联芯、飞腾等众多企业均已累积多年的ARM芯片研发经验,在移动终端领域我国芯片设计技术已与国际主流水平同步,在高性能计算等应用领域也推出了相应的CPU产品。华为、展讯、国防科大等多家企业取得ARM自主化程度最高的架构授权,可进行自主CPU基础架构的研发。2016年4月集合国内外数十家企业的绿色计算产业联盟的成立,将继续推动国内ARM生态的逐步壮大和在全球生态中话语权的提升。

MIPS体系基于架构授权构建开放生态,国内企业是产品研发和生态推动的主要力量。2012年Imagination和ARM的母公司BridgeCrossing合力购得MIPS 公司的580项专利,前者联合多家MIPS芯片设计企业组建MIPS开源社区PRPL 基金会,共同推进MIPS架构与IP的持续向前发展;后者则侧重于战略性收购以提升知识产权能力。我国目前是推动MIPS生态繁荣的主要力量,龙芯在MIPS精简指令集基础上自主扩展了指令集loongISA,并坚持自主研发微架构和编译

器,2015年8月发布的GS464E在整数运算性能方面基本追平了AMD的微结构,浮点运算性能方面接近Intel在2013年发布的Ivy。君正在MIPS基础指令集的基础之上自主扩展了SIMD指令集,侧重于32位嵌入式CPU芯片及配套软件的研发和销售,主要应用于便携教育电子、可穿戴设备等移动便携设备领域。

此外,国内对Power、Alpha等架构也有布局。国内已通过授权得到IBM的Power CPU全套技术,对标行业应用市场。申威对自主的Alpha架构也在不断深化升级,在双核Alpha基础上拓展了多核架构和SIMD等特色扩展指令集,主要面向高性能计算、服务器领域,在2016年国际超算大会评比中,基于申威26010处理器的“神威太湖之光”计算机系统首次亮相并夺冠,其峰值性能达每秒12.5亿亿次浮点运算,成为世界首台运行速度超10亿亿次的超级计算机。

面临挑战和主要问题

国产CPU产业配套滞后于产品技术需求,后续升级压力较大。一是,目前国内制造工艺落后国外两代,CPU专用和高性能制造工艺尚处于起步阶段,面向服务器和PC的国产CPU产品仍需依赖台积电等国外厂商。二是,我国IP产值不足全球的10%,并且高端IP的缺乏难以支撑设计和制造发展的需求。华大九天等国内企业发展自主EDA工具,但目前仍较多应用在低端产品当中。此外,与工艺制造相关的装备和材料技术的落后也制约国内制造工艺的升级,进而影响CPU生态的竞争力。

国产CPU生态环境薄弱且成熟缓慢,长远发展空间受限。受CPU知识产权壁垒和国外CPU企业对商业模式的限制,目前国内孤立的CPU生态环境基础薄弱且成熟缓慢,主要表现在合作伙伴少、软硬件生态力量分散、无法建立Wintel联盟的协同共赢模式、缺乏产业上下游间的融合发展和深度优化等。

应用开发与CPU研制未形成良性互动,竞争力提升缓慢。当前国产CPU研发还极大依赖于国家项目扶植和支持,未结合市场需求,导致产品和应用脱节的情况较为突出,无法持续发展。目前各级单位正在大力推动国产CPU的应用,但因基

于国产CPU的操作系统及应用软件生态并不丰富,目前规模较小,产品竞争力提升缓慢。

对未来发展的建议

强化统筹协调,提升国内技术生态水平。依托国内的市场优势和企业的成长优势,以我国信息安全特殊需求为切入点,针对具有我国特色的个性化应用需求,联合华为、国防科大、展讯等核心优势企业,加大对CPU产品的研发和在相应生态中的影响力。深化国际合作,在兼容开放、专利申请等方面争取更多权益。

强化配套供给,提升国内生态体系完备性。一是,推动国内芯片设计企业与中芯国际等制造企业、江苏长电等封测企业间深化合作,围绕服务器、移动芯片、物联网芯片等专用需求,实现国内自有的专用制造和封测工艺技术。二是,加大对与芯片特色功能优化紧密相关的基础IP的自研力度,力图逐步实现国产化替换。三是,支持企业积极参与国际开源社区,深化对开源软件技术的理解,提升国内CPU系列芯片产品配套应用的系统软件和应用软件供给能力。

强化应用驱动,提升国内技术产业化进程。面向国产化应用实际需求,开展研发攻关和国产化应用部署。整合各类专项资金和社会资金,继续加大对核心技术/产品自主突破的支持力度。鼓励应用企业主导建立应用牵引、研用融合的核心技术研发体系,形成研发、应用、纠错、完善的体系化迭代创新模式,实现技术研发与应用的协同效应。

强化标准建设,提升国内差异化竞争优势。围绕我国特定领域信息安全需求,构建完备标准化体系,并将其纳入国内市场准入控制范畴。推动企业加强对专利申请的重视程度,适当降低知识产权申请的费用门槛和管理门槛,探索产业共建知识产权专利池,提升我国对外知识产权自我保护能力。

intel CPU与芯片组对应支持关系

封装形式处理器型号支持内存类型支持主板新特性 775netburst微架构: Prescott Pentium 4 505J,506,520-570,520J- 570J,521-571 Prescott 2M Pentium 4 630-670,662-672 CedarMill Pentium 4 631-661 Prescott 256K Celeron D 325J-345J,326-351 Prescott Pentium 4 Extreme Edition 3724MHz Smithfield Pentium D 805,820-840 Smithfield Pentium Extreme Edition 840 Presler Pentium D 915,925,920-960 Presler Pentium Extreme Edition 950/960 core微架构 (conroe,kentsfield,wolfdale,yokfield) Conroe Core 2 Duo E4300-4400,E63X0-68X0, Pentium Dual-Core E21X0-E2200 Conroe Core 2 Extreme,X6800 Conore Celeron Dual Core E1X00 Kentsfield Core 2 Quad,Q6600,Q6700 Kentsfield Core 2 Extreme,QX6700,QX6850,QX6800 Penryn:采用了45纳米高-k制造技术(采用铬合金高-K与 金属栅极晶体管设计),并对酷睿微体系结构进行了增 强 双核心桌面处理器Wolfdale、四核心桌面处理器 Yorkfield Wolfdale Core 2 Duo E8X00 45nm Wolfdale Core 2 Duo E7X00 45nm Wolfdale Pentium Dual Core E5X00 45nm Wolfdale Pentium Dual Core E6300 45nm Yorkfield Core 2 Quad,Q8X00,Q9X00,Q9X50 Yorkfield Core 2 Extreme,QX9650,QX9770 DDR2/DDR3 X38、P35、G33 (ddr2 667/ddr3 800)、Q33、G35 、Q35、G31(ddr2 667) x48.p45.p43.g45 .g43.g41 q45.q43(ddr3 1066,ddr3 1333) 1156Westmere微架构: Westmere将是第二代Nehalem处理器 Clarkdale(DAUL,1G) i3 530 540 550 560 I5 650 660 670 680 Nemhalem微架构: lynnfield(QUAD,1G) I7 860 I7 860 I7 870 I5 760 I5 750 Lynnfield是一代i7,完整的四核,屏蔽掉两 个核心的Lynnfield就是一代i5,Clarkdale是 一代i3,Clarkdale是在i5的基础上在缩减QPI 总线带宽和睿频技术 DDR3 P57、H57、H55、 P55、Q57 LGA1156平台带核 显的CPU只有I3系 列和I5的6系列, 其他CPU不带核显 。 CPU集成GFX图形单元 1366Gulftown(6c) i7 990x i7 980x Bloomfield(4c) i7 930 i7 960 i7 950 i7 930 i7 960 i7 965 i7 975 DDR3X58(Flagship)intel处理器接口与对应主板详细规格

常见PHY芯片品牌介绍

常见PHY芯片品牌介绍 2008-01-07 11:39 目前市场上百兆交换机是一个非常成熟的产品,各个芯片公司对自己的产品都进行了多次的优化和精简。总的来说规格和性能方面都能满足作为2层傻瓜型交换机的应用。一些主要的技术指标也基本相同。所有公司的芯片都可以支持10/100M自适应;全线速交换;支持线序交叉功能。下面我们将深入分析目前市场上采用的百兆交换机方案: ?1.Realtek公司??Realtek 公司相信大家比较熟悉,市场上百兆网卡大多采用他们公司8139芯片。作为一个网络低端市场的芯片供应商16口和24口百兆交换机也是他们主推的产品。Realtek公司百兆交换机方案的芯片型号为:RTL8316+ RTL8208;24口RTL8324 +RTL8208。Realtek公司采用的是MAC(媒介控制芯片)与PHY(物理层芯片)相分离的架构。RTL8316和RTL8324是MAC(媒介控制芯片),RTL8208是8口的PHY(物理层芯片)。RTL8316 集成4M位DRAM缓存用于数据包存储转发;RTL8324集成4 M 位缓存。这个缓存的大小对于交换机处理数据的能力有着很大的影响!RTL8316和RTL8324 MAC地址表的深度为8K! 2.ICPlus公司? ICPlus公司也是台湾一家有着多年历史的网络芯片生产商。ICPlus公司百兆交换机方案的芯片型号为:IP1726+IP108。同样ICPlus公司也采用MAC(媒介控制芯片)与PHY (物理层芯片)相分离的架构。 ?IP1726是MAC(媒介控制芯片),IP108是8口的PHY(物理层芯片)。IP1726集成1.5M 位缓存用于数据包存储转发。IP1726MAC地址表的深度为4K! 3.Admtek公司? Admtek公司今年已经被德国英飞凌公司收购,实际上应该是德国公司。Admtek公司百兆交换机方案的芯片型号为:ADM6926 + ADM7008。同样Admtek公司也采用MAC(媒介控制芯片)与PHY(物理层芯片)相分离的架构。ADM6926是MAC(媒介控制芯片),ADM7008是8口的PHY(物理层芯片)。ADM6926集成4 M 位DRAM缓存用于数据包存储转发。ADM6926MAC地址表的深度为4K! ?4.Broadcom公司? Broadcom公司是数据通讯芯片行业无论在技术还是在市场上都处于主导和领先地位的公司美国公司。2层傻瓜型交换机芯片只是其Robo Switch产品线中的一小部分。作为领导者Broadcom公司在几年前率先将MAC与PHY集成在同一颗芯片当中。其芯片的网络兼容性,稳定性是其他公司需要无法企及的。Broadcom公司百兆交换机方案的芯片型号为:AC526(16口),AC524(24口)。AC526/524集成4 M 位缓存用于数据包存储转发。AC526/524MAC地址表的深度为4K!??通过以上的比较,各个公司的产品规格参数基本相同。作为在市场上销售多年的产品,其品质50%取决于芯片方案的选择,50%取决于不同交换机品牌生产厂家的设计,采购和生产的控制能力。目前最终用户在选择交换机时可以结合以上两个方面进行选择。 以下是目前常用的网卡控制芯片。?1、Realtek8201BL:是一种常见的主板集成网络芯片(又称为PHY网络芯片)。PHY芯片是指将网络控制芯片的运算部分交由处理器或南桥芯片处理,以简化线路设计,从而降低成本。 2、Realtek 8139C/D:是目前使用最多的网卡之一。8139D主要增加了电源管理功能,其他则基本上与8139C芯片无异。该芯片支持10M/100Mbps。 3、lntelPro/100VE:lntel公司的入门级网络芯片。? 4、nForce MCPN

《国家科技重大专项“核心电子器件高端通用芯片及基础软件产品

《国家科技重大专项“核心电子器件高端通用芯片及基础 软件产品 受理编号: 密级:公布 国家科技重大专项 核心电子器件、高端通用芯片及基础软件产品 课题申报书 方向名称: 课题名称: 课题编号: 牵头申报单位(盖章):(应填写可办理银行特设账户的单位全称) 牵头单位法定代表人: 课题负责人: 联合申报单位数量:(联合申报单位不超过2家) 课题实施年限:2011年1月至20××年××月 编制日期:2 0××年××月××日

一般要求 一、纸介质文件规格:中文编写、A4纸张、宋体四号、单倍行距、双面打印、装订成一册。申报书中第一次显现外文名词时,要写清全称和缩写,再显现同一词时能够使用缩写。 二、电子版文件规格:光盘提交,电子版内容应与纸介质文件内容完全一致,申报书中引用的外来文件采纳扫描格式。本申报书格式可在工业和信息化部网站(https://www.wendangku.net/doc/cd4841048.html,)及科学技术部(https://www.wendangku.net/doc/cd4841048.html,)网站查询。 三、包装要求:所有申报材料应封装在一个纸箱内。纸箱应标注(或打印后张贴)申报课题编号及申报单位名称(盖章)。 四、申报者应客观、真实地填报申报材料,尊重他人知识产权,遵守国家有关知识产权法规。在申报书中引用他人研究成果时,必须以脚注或其他方式注明出处,引用目的应是介绍、评论与自己的研究相关的成果或说明与自己的研究相关的技术问题。关于伪造、篡改科学数据,抄袭他人著作、论文或者剽窃他人科研成果等科研不端行为,一经查实,将记入信用记录。 五、课题只能由法人提出申请,能够独立申报或联合申报。每个课题申报只能有一个牵头单位,牵头单位为课题组织实施的责任单位,并承担课题所需地点财政配套资金和单位自筹资金的落实任务,牵头单位的法定代表人为课题责任人。 八、课题申报单位在《课题申报书》中要明确列出与本课题有关的已获得的国家项目支持情形,包括国家科技打算名称、已资助金额及验收情形。 九、课题经费来源包括:专项资金(或称专项资助)和配套资金。配套比例请注意课题申报指南中的要求。课题总经费、申请专项资金额度应与申报单位的现有研发能力、

一文读懂处理器,内核,芯片三个概念的区别

一文读懂处理器,内核,芯片三个概念的区别 一、处理器简介处理器一般指中央处理器。中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心(Control Unit)。它的功能主要是解释计算机指令以及处理计算机软件中的数据。 中央处理器主要包括运算器(算术逻辑运算单元,ALU,Arithmetic Logic Unit)和高速缓冲存储器(Cache)及实现它们之间联系的数据(Data)、控制及状态的总线(Bus)。它与内部存储器(Memory)和输入/输出(I/O)设备合称为电子计算机三大核心部件。 处理器主要功能:处理指令 英文Processing instructions;这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。 执行操作 英文Perform an action;一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 控制时间 英文Control time;时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。处理数据 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。 其功能主要是解释计算机指令以及处理计算机软件中的数据,并执行指令。在微型计算机中又称微处理器,计算机的所有操作都受CPU控制,CPU的性能指标直接决定了微机系统的性能指标。CPU具有以下4个方面的基本功能:数据通信,资源共享,分布式处理,提供系统可靠性。运作原理可基本分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。 处理器工作过程:CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指

各手机芯片厂商介绍

各手机芯片厂商介绍 TI德州仪器虽然是自2002年才进行WLAN芯片开发行列,但是凭借其作为了际半导体芯片大厂的实力和经验,加上几年来一系列的成功并购,使其很快就在WLAN领域占住了脚跟,也使得它仅在1年之后的2003年度就把GlobespanVirata赶下冠军宝座。目前TI为全球超过40家制造商提供WLAN技术,其中包括:D-LinkSystems(友讯)、惠普(HP)、英特尔(Intel)、摩托罗拉(Motolora)、网件(NETGEAR)公司、Netopia公司、三星机电(SamsungEM)、SiemensSubscriberNetworks、SMCNetworks、U.S.Robotics、Westell及众多亚洲ODM厂商等。 在2003年,TI主要是以802.11b+芯片产品作为重点市场进行开拓的,这在当时IEEE802.11g标准才未正式发布,而IEEE802.11a由于其自身价格昂贵与不与IEEE802.11b设备兼容的特殊原因,并不受许多用户接受的大环境下,TI 的具有22Mbps速率,并且与IEEE802.11b设备完全兼容,与IEEE802.11b设备价格差不多的产品策略是非常深得人心的。但这只能是在2003年度,随着IEEE802.11g标准的正式发布,早在2002年就开始研发的各种基于IEEE802.11b/g双重标准和IEEE802.11a/b/g三大标准的多模式WLAN模式设备不断上市,所以目前TI的WLAN产品线非常齐全,它可以全面地为客户提供低功耗的802.11a、802.11b、802.11b+、802.11g和802.11g+方案。尽管它的产品型号并不多,但它的每一种型号的产品均支持多种WLAN标准。下面分别介绍。 (1)TNETW1230 TNETW1230是TI最新一个WLAN芯片产品,它是一块大小仅为12mmx12mm 的单芯片的MAC和基带处理器单芯片,芯片外观如图1左图所示。它全面支持IEEE802.11a/b/g三大WLAN标准,它可以全面支持802.11a、802.11b、802.11b+、802.11g和802.11g+标准,为客户提供最为全面的WLAN芯片方案。它具有非常低的功耗,适用于像手机、手持电话和PDA之类便携式电池供电移动设备使用。 TNETW1230它具有以下关键特性: TI的ELP(EnhanceLowPower,超低电源)技术,使得这块芯片可以长久工作在工业中最低的1mA功耗模式。 TNETW1230可以与TI的OMAP处理器、GSM、GPRS和CDMA芯片和单芯片的蓝牙芯片组合使用,形成一个完善的无线系统设计。 TNETW1230包括一个VLYNQ芯片至TNETW1230芯片的低功耗、少引脚串行接口。通过这个接口,TNETW1230可以非常容易地与TI的OMAP处理器和TCS 芯片单元连接,发展Wi-Fi单元电话和PDA无线网络系统。 TNETW1230也可以非常容易地与TI的BRF6100和BRF6150单芯片通过蓝牙方案连接,作为TI蓝牙-802.11方案的一部分一起封装。 MT6226为MT6219costdown产品,内置0.3Mcamera处理IC,支持GPRS、WAP、MP3、MP4等,内部配置比MT6219优化及改善,比如配蓝牙是可用很便宜的芯片CSR的BC03模块USD3即可支持数据传输(如听立体声MP3等)功能。 MT6226M为MT6226高配置设计,内置的是1.3Mcamera处理IC。(2006年MP) MT6227与MT6226功能基本一样,PINTOPIN,只是内置的是2.0Mcamera 处理IC。(2006年MP) MT6228比MT6227增加TVOUT功能,内置3.0Mcamera处理IC,我公司供应的MTK手机套片详解:

电压基准芯片的参数解析及应用技巧

电压基准芯片的参数解析及应用技巧 电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。 电压基准芯片的分类 根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN结的负温度系数与VT的正温度系数相抵消实现温度补偿。稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。次表面击穿有利于降低噪声。稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。 根据外部应用结构不同,电压基准分为:串联型和并联型两类。应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。带隙电压基准和稳压管电压基准都可以应用到这两种结构中。串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。 电压基准芯片参数解析 安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V输出电压,并提供良好的温度漂移特性和噪声特性。

半导体封装技术

随着半导体技术的发展,摩尔定律接近失效的边缘。产业链上IC 设计、 晶圆制造、封装测试各个环节的难度不断加大,技术门槛也越来越高,资 本投入越来越大。由单个企业覆盖整个产业链工艺的难度显著加大。半导 体产业链向专业化、精细化分工发展是一个必然的大趋势。 全球半导体产业整体成长放缓,产业结构发生调整,产能在区域上重新分 配。半导体产业发达地区和不发达地区将会根据自身的优势在半导体产 业链中有不同侧重地发展。封装产能转移将持续,外包封装测试行业的增 速有望超越全行业。 芯片设计行业的技术壁垒和晶圆制造行业的资金壁垒决定了,在现阶段, 封装测试行业将是中国半导体产业发展的重点。 在传统封装工艺中,黄金成本占比最高。目前采用铜丝替代金丝是一个大 的趋势。用铜丝引线键合的芯片产品出货占比的上升有助于提高封装企 业的盈利能力。 半导体封装的发展朝着小型化和多I/O 化的大趋势方向发展。具体的技术 发展包括多I/O 引脚封装的BGA 和小尺寸封装的CSP 等。WLSCP 和 TSV 等新技术有望推动给芯片封装测试带来革命性的进步。 中国本土的封装测试企业各有特点:通富微电最直接享受全球产能转移; 长电科技在技术上稳步发展、巩固其行业龙头地位;华天科技依托地域优 势享受最高毛利率的同时通过投资实现技术的飞跃。 中国本土给封装企业做配套的上游企业,如康强电子和新华锦,都有望在 封装行业升级换代的过程中提升自己的行业地位。 风险提示:全球领先的封装测试企业在中国大陆直接投资,这将加大行 业内的竞争。同时用工成本的上升将直接影响半导体封装企业的盈利能 力。 半导体封装产能持续转移 半导体封装环节至关重要 半导体芯片的大体制备流程包括芯片设计->圆晶制造->封装测试。所谓半导体 ?封装(Packaging)?,是半导体芯片生产过程的最后一道工序,是将集成电路用绝缘的材料打包的技术。封装工艺主要有以下功能:功率分配(电源分配)、信号分配、散热通道、隔离保护和机械支持等。封装工艺对于芯片来说是必须的,也是至关重要的一个环节。因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能的下降。另外,封装后的芯片也更便于安装和运输。可以说封装是半导体集成电路与电路板的链接桥梁,封装技术的好坏还直接影响到芯片自身的性能和PCB 的设计与制造, 产业分工精细化 随着半导体产业的发展,?摩尔?定律持续地发酵,IC 芯片集成度以几何级数 上升,线宽大幅下降。以INTEL CPU 芯片为例,线宽已经由1978 年推出的8086 的3 μm 发展到2010 年推出Core i 7 的45nm , 对应的晶体管集成度由2.9 万只发展到7.8 亿只。产业链上IC 设计、晶圆制造、封装测试各个环节的难度不断加大,技术门槛也越来越高。同时随着技术水平的飞升和规模的扩大,产业链中的多个环节对资本投入的要求也大幅提高。由单个企业做完覆盖整个产业链工艺的难度越来越大。在这样的大环境下,产业链向专业化、精细化分工发展是一个必然的大趋势。 目前全球的半导体产业链大致可以归纳为几大类参与者:IDM 集成设备制造商;

微处理器发展史

微处理器发展史 CPU发展史 CPU也称为微处理器,微处理器的历史可追溯到1971年,当时INTEL公司推出了世界上第一台微处理器4004。 它是用于计算器的4位微处理器,含有2300个晶体管。从此以后,INTEL便与微处理器结下了不解之缘。 下面以INTEL公司的80X86系列为例介绍一下微处理器的发展历程。 1978和1979年, INTEL公司先后推出了8086和8088芯片,它们都是16位微处理器, 内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位, 可使用1MB内存。它们的内部数据总线都是16位,外部数据总线8088是8位,8086是16位。

1981年 8088芯片首次用于IBMPC机中,开创了全新的微机时代。最早的i8086/8088是采用双列直插(DIP)形式封装, 从i80286开始采用方形BGA扁平封装(焊接), 从i80386开始到Pentiumpro开始采用方形PGA(插脚),1982年, INTEL推出了80286芯片,该芯片含有13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。 其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。80286有两种工作方式:实模式 和保护模式。 1985年 INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,内含27.5万个晶体管, 时钟频率为12.5MHz,后提高到20MHz,25MHz,33MHz。

其内部和外部数据总线都是32位,地址总线也是32位,可寻址4GB内存。 它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086 处理器来提供多任务能力。 除了标准的80386芯片(称为80386DX)外,出于不同的市场和应用考虑,INTEL又陆续推出了一些 其它类型的80386芯片: 80386SX、80386SL、80386DL等。 1988年 推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX的不同在于 外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。 1990年 推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。

NEURON多处理器芯片及其应用

Neuron多处理器芯片及其应用摘要:Neuron芯片是美国Mitorola公司和日本Toshiba 公司制造的一种多处理器结构的神经元芯片。它将通信协议和控制用微处理器有效地集成在一起,实现通信、控制、调度和I/O等功能。本文以MC134150为例,介绍有关Neuron芯片的基本结构和组成、LonTalk协议以及应用系统的组成方式等。关键词:神经元芯片多处理器 Neuron固件一、Neuron芯片的基本组成Neuron芯片作为一种多处理器结构的神经元芯片,有着完整的系统资源,如图1所示,其内部集成有三个管线CPU,最高工作频率可达10MHz。它设置有11编程输入、输出引脚(IO1~IO10),编程方法多达34种,方便了实现应用。片内设有EEPROM和RAM,支持有外部扩展多种存储器的接口,最大存储空间允许有64KB。内部含有两个16位定时器/计数器,能够由固件产生15个软件定时器。Neuron芯片的长处还在于它的网络通信功能,引出的五个通信引脚(CP0~CP4)提供了单端、差分和特殊应用模式等三种网络通信方式。 1.处理器单元Neuron芯片集成有三个处理器,其中一个用于执行用户编写的应用程序,另外两个完成网络任务。图2示意了Neuron芯片内三个处理器的功能分配及与内部共享存储器区域之间的关系。(1)MAC处理器是媒体访问控制层处理器。它处理OSI七层网络协议中的1,2层,主要包括驱动通信子系统硬件以及执行冲突回避算法等。MAC 处理器使用位于共享存储器中的网络缓冲区与网络处理器进行通信。(2)网络处理器实现网络协议中的3~6层。它实现网络变量处理、寻址、事务处理、文电鉴别、软件定时器、网络管理和路由等功能。网络处理器通过共享存储器中的网络缓冲区与MAC处理器通信,并采用应用缓冲区与应用处理器进行通信。应用缓冲区也是设置在共享存储器中的。对缓冲区的访问都用硬件信号灯来协调,以便在更新共享数据时消除竞争。(3)应用处理器一方面执行用户编写的应用程序代码,另一方面执行由用户代码所调用的操作系统服务。大多数应用程序均可采用Neuron C语言来编制,使编程工作真正从繁琐的汇编语言中解脱出来。2.存储器分配MC143150的外扩存储器接口总线中,有8位双向数据总线、16位处理器驱动的地址总线以及用于外部存储器存取访问的两个接口信号线R/W和E。总的地址空间为64KB,其中有6KB 的地址空间保留在芯片内,剩余的58KB的地址空间供外扩存储器使用。在外扩存储器中,通常用16KB存放固件,其余的42KB用于存放用户程序和数据信息。3.应用I/O口具有11个引脚的I/O接口提供有34种编程方式,另外,2个16位定时器/计数器可用于频率和定时I/O。由固件产生的15种软件定时器并不占用应用处理器的运算时间,而由完成网络功能的处理器实现。因此,用户可直接使用软件定时器,不必考虑其具体操作。[!--empirenews.page--]Neuron芯片提供的11个I/O引脚(IO0~IO10)可通过编程设定为34种不同的I/O对象,支持电平、脉冲、频率、编码等各种信号模式,有直接I/O对象、定时器/计数器I/O对象、串行I/O对象、并行I/O对象等供用户选择。它们与集成的硬件和固件一起可用于连接马达、阀门、显示驱动器、A/D转换器、压力传感器、热敏电阻、开关量、继电器、可控硅、转速计、其他处理器和调制解调器等,方便了实际应用。表1列举了所有I/O对象的基本类型。表1 I/O对象类型参照表I/O对象类型注释Bit input/output位输入/输出Bitshift input/output位称输入/输出Byte input/output字节输入/输出Dualslope input双积分输入Edgedivide output脉冲沿分离输出Edgelog input边沿跳变时间间隔序列输入Frequency output频率输出I2C input/outputI2C输入/输出Infrared input远红外输入Leveldetect input电平监测输入Magcard input磁卡编码输入Magtrackl input经录入1输入Muxbus input/output多总线输入/输出Neurowire input/output神经元接口输入/输出Nibble input/output半字节输入/输出Oneshot output单稳输出Ontime input逻辑电持续时间输入Parallel input/output并行输入/输出Preiod input周期输入Pulsecount input脉冲计数输入Pulsecount output脉冲计数输出Pulsewidth output脉宽输出Quadrature input位置码盘输入Serial input/output串行输入/输出Totalcount input 累加计数输入Touch input/output触点输入/输出Triac output触发输出Triggeredcount

广东2021年芯片产品量产前首轮流片项目申报指南

附件2 芯片产品量产前首轮流片项目申报指南 一、政策依据 根据《广东省加快半导体及集成电路产业发展的若干意见》(粤府办〔2020〕2号,以下简称《若干意见》),要求对“我省高等学校、科研机构以及集成电路设计企业开展拥有自主知识产权的28nm及以下或具备较大竞争优势的芯片流片,省促进经济高质量发展专项资金对产品量产前首轮流片费用按不超过30%给予奖补,同一主体每年奖补的研发资金不超过1000万元”,并明确此项任务由省工业和信息化厅负责,每年组织实施。 二、支持范围 申报芯片产品量产前首轮流片包括采用先进特色工艺制程流片的芯片、《若干意见》明确重点发展方向的芯片、重点应用领域具备较大竞争优势的芯片,申请时须满足下列条件之一:(一)采用先进特色工艺制程流片的芯片 1.采用28nm及以下制程流片的数字芯片 2.采用180nm及以下制程流片的模拟芯片或数模混合芯片 3.采用GaAs、GaN、SiC化合物半导体工艺流片的功率或射频芯片 4.采用FDSOI制造工艺流片的芯片 5.采用BCD制造工艺流片的芯片

(二)《若干意见》明确重点发展方向芯片 6.高端通用芯片【存储芯片、处理器芯片(CPU、GPU、FPGA、DSP)】 7.射频芯片 8.传感器芯片(采用CMOS、MEMS工艺) 9.基带芯片 10.交换芯片 11.光通信芯片 12.显示驱动芯片 13.RISC-V(基于精简指令集原则的开源指令集架构)芯片 14.车规级AI(人工智能)芯片 15.毫米波芯片、太赫兹芯片 (三)重点应用领域具备较大竞争优势的芯片 16.5G通信芯片 17.超高清视频芯片(编解码芯片、数据传输芯片、高端CMOS图像传感器芯片) 18.物联网智能硬件核心芯片(工业物联网芯片、低功耗广域网芯片、通讯射频芯片、身份识别类芯片、物联网安全芯片和移动支付芯片) 19.生物医疗芯片(表达谱芯片、疾病检测芯片、商检芯片、蛋白芯片、基因芯片、细胞芯片、组织芯片、生物芯片识别仪、微点阵生物芯片、微流路生物芯片) 三、专题申报条件

LED芯片厂商简介

LED芯片厂商简介 台湾芯片厂商: 晶元光电(Epistar)简称:ES、(联诠、元坤,连勇,国联),广镓光电(Huga),新世纪(Genesis Photonics),华上(Arima Optoelectronics)简称:AOC,泰谷光电(Tekcore),奇力,钜新,光宏,晶发,视创,洲磊,联胜(HPO),汉光(HL),光磊(ED),鼎元(Tyntek)简称:TK,曜富洲技TC,燦圆(Formosa Epitaxy),国通,联鼎,全新光电(VPEC)等。
华兴(Ledtech Electronics)、东贝(Unity Opto Technology)、光鼎(Para Light Electronics)、亿光(Everlight Electronics)、佰鸿(Bright LED Electronics)、今台(Kingbright)、菱生精密(Lingsen Precision Industries)、立基(Ligitek Electronics)、光宝(Lite-On Technology)、宏齐(HARV A TEK)等。 大陆LED芯片厂商: 三安光电简称(S)、上海蓝光(Epilight)简称(E)、士兰明芯(SL)、大连路美简称(LM)、迪源光电、华灿光电、南昌欣磊、上海金桥大晨、河北立德、河北汇能、深圳奥伦德、深圳世纪晶源、广州普光、扬州华夏集成、甘肃新天电公司、东莞福地 电子材料、清芯光电、晶能光电、中微光电子、乾照光电、晶达光电、深圳方大,山东华光、上海蓝宝等。 国外LED芯片厂商: CREE,惠普(HP),日亚化学(Nichia),丰田合成,大洋日酸, 东芝、昭和电工(SDK),Lumileds,旭明(Smileds),Genelite,欧司朗(Osram),GeLcore,首尔半导体等,普瑞,韩国安萤(Epivalley)等。 1、CREE 著名LED芯片制造商,美国CREE公司,产品以碳化硅(SiC),氮化镓(GaN),硅(Si)及相关的化合物为基础,包括蓝,绿,紫外发光二极管(LED),近紫外激光,射频(RF)及微波器件,功率 开关器件及适用于生产及科研的碳化硅(SiC)外延片。 2、OSRAM(欧司朗是西门子全资子公司):是世界第二大光电半导体制造商,产品有

常用电源芯片及其参数

常用电源的电源稳压器件如下: 79L05 负5V稳压器 79L06 负6V稳压器 79L08 负8V稳压器 79L09 负9V稳压器 79L12 负12V稳压器 79L15 负15V稳压器 79L18 负18V稳压器 79L24 负24V稳压器 LM1575T-3.3 3.3V简易开关电源稳压器(1A) LM1575T-5.0 5V简易开关电源稳压器(1A) LM1575T-12 12V简易开关电源稳压器(1A) LM1575T-15 15V简易开关电源稳压器(1A) LM1575T-ADJ

简易开关电源稳压器(1A可调1.23 to 37) LM1575HVT-3.3 3.3V简易开关电源稳压器(1A) LM1575HVT-5.0 5V简易开关电源稳压器(1A) LM1575HVT-12 12V简易开关电源稳压器(1A) LM1575HVT-15 15V简易开关电源稳压器(1A) LM1575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575T-3.3 3.3V简易开关电源稳压器(1A) LM2575T-5.0 5V简易开关电源稳压器(1A) LM2575T-12 12V简易开关电源稳压器(1A) LM2575T-15 15V简易开关电源稳压器(1A) LM2575T-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575HVT-3.3 3.3V简易开关电源稳压器(1A) LM2575HVT-5.0 5V简易开关电源稳压器(1A) LM2575HVT-12 12V简易开关电源稳压器(1A)

LM2575HVT-15 15V简易开关电源稳压器(1A) LM2575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2576T-3.3 3.3V简易开关电源稳压器(3A) LM2576T-5.0 5.0V简易开关电源稳压器(3A) LM2576T-12 12V简易开关电源稳压器(3A) LM2576T-15 15V简易开关电源稳压器(3A) LM2576T-ADJ 简易开关电源稳压器(3A可调1.23V to 37V) LM2576HVT-3.3 3.3V简易开关电源稳压器(3A) LM2576HVT-5.0 5.0V简易开关电源稳压器(3A) LM2576HVT-12 12V简易开关电源稳压器(3A) LM2576HVT-15 15V简易开关电源稳压器(3A) LM2576HVT-ADJ 简易开关电源稳压器(3A可调1.23V to 37V) LM2930T-5.0 5.0V低压差稳压器

(整理)功率半导体强化设计能力寻求中高端突破.

功率半导体包括功率二极管、功率开关器件与功率集成电路。近年来,随着功率MOS(金属氧化物半导体)技术的迅速发展,功率半导体的应用范围已从传统的工业控制领域扩展到4C领域(计算机、通信、消费类电子产品和汽车电子),渗透到国民经济与国防建设的各个方面。我国拥有国际上最大的功率半导体市场,拥有迅速发展的半导体代工线及国际上最大规模的人才培养体系,但中国功率半导体产业的发展必须改变目前封装强于芯片、芯片强于设计的局面。功率半导体行业应加强技术力量的引进和消化吸收,大力发展设计技术,以市场带动设计,以设计促进芯片,以芯片壮大产业。 发展功率半导体符合中国国情 功率半导体器件是进行电能处理的半导体产品。在可预见的将来,电能将是人类消耗的最重要能源,无论是水电、核电、火电还是风电,甚至各种电池提供的化学电能,大部分均无法直接使用,75%以上的电能应用需由功率半导体进行变换以后才能供设备使用。每个电子产品均离不开功率半导体器件。功率半导体的作用是使电能更高效、更节能、更环保并给使用者提供更多的方便。如通过变频来调速,使变频空调在节能70%的同时更安静并让人更舒适;手机的功能越来越多,同时更加轻巧,很大程度上也得益于超大规模集成电路的发展和功率半导体研发的进步;同时,人们希望一次充电后有更长的使用时间,在电池技术没有革命性进步以前,需要更高性能的功率半导体器件进行高效的电源管理。正是由于功率半导体技术能将“粗电”变为“精电”,因此它是节能减排的基础技术和核心技术。 随着绿色环保理念在国际上的确立与推进,功率半导体的发展应用前景更加广阔。消费电子、工业控制、照明等传统市场需求的稳定增长以及汽车电子市场的逐渐扩大,加上通信和电子玩具市场的火爆,都使功率半导体市场继续保持稳步的增长态势。同时,高效节能、环境保护已成为当今全世界的共识,提高效率与减少待机功耗已成为消费电子与家电产品的两个非常关键的指标。中国目前已经开始针对某些产品提出能效要求,对冰箱、空调、洗衣机等产品实施了能效标识政策,这些提高能效的要求又成为功率半导体迅速发展的另一个重要驱动力。 据国际权威机构预测,2011年功率半导体在中国市场的销售量将占全球的50%,年销售额接近200亿美元。与微处理器、存储器等数字集成半导体相比,功率半导体不追求尺寸的快速缩小,它的产品寿命周期可为几年甚至十几年。同时,功率半导体也不要求最先进的生产工艺,其生产线成本远低于“摩尔定律”制约下的超大规模集成电路的发展成本。因此,功率半导体非常适合我国的产业现状以及我国能源紧张和构建和谐社会的国情。 精品文档

CPU芯片的制作过程

转载自 https://www.wendangku.net/doc/cd4841048.html, CPU是计算机的心脏,它是决定计算机性能的最重要的部件。同样CPU也是现代社会飞速运转的动力源泉,在任何电子设备上都可以找到微芯片的身影。不过能完成复杂功能的CPU确是以沙子为原料做成的,不得不惊叹于人类的智慧!Intel公布了大量图文资料,详细展示了从沙子到芯片的全过程,满足你的好奇心。 简单地说,处理器的制造过程可以大致分为沙子原料(石英)、硅锭、晶圆、光刻(平版印刷)、蚀刻、离子注入、金属沉积、金属层、互连、晶圆测试与切割、核心封装、等级测试、包装上市等诸多步骤,而且每一步里边又包含更多细致的过程。 下边就图文结合,一步一步看看: ===================================================================== ============= CPU制造:第一阶段图文直播: 沙子:硅是地壳内第二丰富的元素,而脱氧后的沙子(尤其是石英)最多包含25%的硅元素,以二氧化硅(SiO2)的形式存在,这也是半导体制造产业的基础。 (原文件名:1.jpg) 引用图片 硅熔炼:12英寸/300毫米晶圆级,下同。通过多步净化得到可用于半导体制造质量的硅,学名电子级硅(EGS),平均每一百万个硅原子中最多只有一个杂质原子。此图展示了是如何通过硅净化熔炼得到大晶体的,最后得到的就是硅锭(Ingot)。

(原文件名:2.jpg) 引用图片 单晶硅锭:整体基本呈圆柱形,重约100千克,硅纯度99.9999%。 (原文件名:3.jpg) 引用图片 ===================================================================== ============= CPU制造:第二阶段图文直播: 硅锭切割:横向切割成圆形的单个硅片,也就是我们常说的晶圆(Wafer)。顺便说,这下知道为什么晶圆都是圆形的了吧?

全球重点芯片公司介绍

全球重点芯片公司介绍 龙继军 英特尔公司——全球最大的芯片制造商 英特尔公司是全球最大的芯片制造商及国际领先的个人电脑网络产品和通信产品的生产商。自一九八五年进入中国市场以来,英特尔公司已在中国设立了十二个办事机构,并在上海兴建了世界一流的制造工厂。为了与中国的计算机行业共同发展,在上海和北京分别成立了英特尔上海软件实验室和英特尔中国研究中心。 我们不仅努力发展新一代的微型处理器,更为各方人士的沟通,学习和生活作出多元化的改善。杰出的员工是我们成功的关键。英特尔公司以独特的企业文化,"业绩为本"的激励机制及每一位员工都能享受的股票期权计划,创造"良好的工作环境",吸引最优秀的人才。我们身为高科技的先驱者,为您提供不可多得的工作机会。把握科技时代的脉搏,亲身体验探索尖端科技领域的乐趣,发掘具有创意的解决方案,在无止境的挑战中开拓人生的崭新境界,尽在英特尔世界。 日本Elpida公司——全球最大芯片工厂 日本硕果仅存的DRam芯片制造商Elpida内存公司表示,计划在未来三年最多投资5000亿日元(54亿美元)建立全球最大的芯片制造工厂之一。 这一投资突出显示了DRam芯片制造商面临的压力,他们需要通过增加投资来保持竞争力。英飞凌、Nanya技术公司已经宣布将合作投资建立工厂,明年的产量将能达到50000个圆片。 Elpida希望这一投资能使公司进入市场领先者的行列。三星、美光、英飞凌目前主宰着市场。iSuppli 的数据显示,Elpida目前是全球第六大DRam芯片制造商,有4.3%的份额。Elpida是日立和NEC建立的合资企业,希望这家位于Hiroshima的工厂在2005年秋季能开始生产先进的300毫米圆片,主要用于数码产品,其中包括手机和数码电视。 最初的产量将在每月一万个圆片左右,但是在2007年可望提高到每月六万个圆片。ING芯片分析师YoshihiroShimada表示:“这一投资是Elpida生存的条件。如果他们不能发展,就应该退出。所以,他们必须这么做。”Elpida在市场中还是一个轻量级选手,市场份额只有排名第三的英飞凌的四分之一。 Elpida目前仍然在调整第一座工厂的生产线,希望在年底将生产能力提高到28000个300毫米圆片。汇丰分析师史蒂夫-迈尔斯表示:“如果只有一个工厂,市场份额就会相对太低。”但是Elpida要募集新工厂的资金也面临着巨大的障碍,他们将通过银行贷款还将发行债券和新股,同时租赁一些设备。Elpida计划今年IPO上市,这是这一投资的先决条件。 IDC——全球第3大DRAM厂商 据韩国媒体报道,市场研究公司IDC日前称,去年,德国的英飞凌科技公司已经超过韩国Hynix半导体公司成为全球第三大DRAM制造商。 全球最大的内存片制造商三星电子公司,去年仍然保持了其在这一市场的领头地位,其市场份额是29.7%。美国的美光科技公司排列第二,市场份额是19.7%。 IDC还预计,今年全球科技发展投资与去年比将增长7%,而今年早些时候曾预计这个数字是4.9%。 台湾TSMC——全球最大的芯片代工企业 台湾积体电路制造公司(TSMC,简称台积电)是全球最大的芯片代工企业,该公司行政总裁及创始人张忠谋(MorrisChang)对芯片行业的健康状况有独特观点。 张忠谋认为,尽管深深困扰芯片行业的3年低迷时期即将结束,但是该行业的前景还不能说是一片光明。 他认为半导体行业在宽带、传感器和无线应用领域都有良好的发展机会,还有许多应用潜力有待开发。但是,看似光明的前景却处在一个令人担忧的背景之下。电子设备中的半导体含量已经饱和。1980年代,电子装备中半导体的平均含量仅为5%。随后该比例逐年上升,2000年达到最高点21%。目前该含量又开

相关文档
相关文档 最新文档