文档库 最新最全的文档下载
当前位置:文档库 › 东南大学统计信号处理实验一概论

东南大学统计信号处理实验一概论

东南大学统计信号处理实验一概论
东南大学统计信号处理实验一概论

《统计信号处理》实验一

一、实验目的:

1、掌握噪声中信号检测的方法;

2、熟悉Matlab 的使用;

3、掌握用计算机进行数据分析的方法。 二、实验内容:

假设信号为()s t 波形如下图所示:

在有信号到达时接收到的信号为()()()x t s t n t =+,在没有信号到达时接收到的信号为

()()x t n t =。其中()n t 是均值为零、方差为225n σ=(可自行调整)的高斯白噪声。假设

有信号到达的概率P(H 1)=0.6,没有信号到达的概率P(H 0)=0.4。对接受到的信号分别在t = 0ms, 1ms, …, 301ms 上进行取样,得到观测序列()x n 。

1、利用似然比检测方法(最小错误概率准则),对信号是否到达进行检测;

2、假设102C =,011C =。利用基于Bayes 准则的检测方法,对信号是否到达进行检测;

3、通过计算机产生的仿真数据,对两种方法的检测概率d P 、虚警概率f P 、漏警概率m P 和Bayes 风险进行仿真计算;

4、通过改变P(H 1)和P(H 0)来改变判决的门限(风险系数10C 和01C 不变),观察检测方法的d P 、f P 、m P 和Bayes 风险的变化;

5、改变噪声的方差,观察检测方法的d P 、f P 、m P 和Bayes 风险的变化;

6、将信号取样间隔减小一倍(相应的取样点数增加一倍),观察似然比检测方法的d P 、

f P 、m P 和Bayes 风险的变化;

7、根据()s t 设计一个离散匹配滤波器,并观察()x n 经过该滤波器以后的输出。

三、实验要求:

1、设计仿真计算的Matlab 程序,给出软件清单;

2、完成实验报告,对实验过程进行描述,并给出实验结果,对实验数据进行分析,给出结论。

四、设计过程:

1、产生信号s(t),n(t),x(t),t = 0ms, 1ms, …, 301ms ;其中:

?????????????????

???

??

?≤≤+-≤≤-≤≤+-≤≤-≤≤+-≤≤-≤≤+-≤≤=301290,3010

1

289270,28101

269230,5.12201

229190,5.10201189140,6.625

1

13990,6.42518930,2301290,301

)(t t t t t t t t t t t t t t t t t s 2、根据定义似然比函数10(|)()(|)

p x H x p x H Λ=,门限001()()P H P H Λ=,如果0

)(Λ>Λx ,则

判定1D ;否则,判定0

D 。这就是似然比检测准则。

假设似然比为x ,在某取样率的条件下,假设得到的随机变量分布为x 1,x 2,…,x N 。 则没有信号时的概率密度函数为:

5002102)251()|,...,,(∑==-N

i i

x N

N e H x x x p π

有信号时的概率密度函数为:

50

)-(12102

)251()|,...,,(∑==-N

i i i s x N

N e

H x x x p π

由此可以得到似然比函数为:

50

)

-s 2(021121210

2i )

|,...,,()

|,...,(),...,,(∑==Λ=N

i i i s x N N N e

H x x x p H x x x p x x x

相应的似然比判决准则为:

50

)

-s 2(210

2i ),...,,(∑=Λ=N

i i i s x N e

x x x >0Λ时判定

1

D ;否则,判定

D 。或:

∑∑==+Λ>N i i

N

i i i s s x 0

20021ln 25)(时判定1D ;否则,判定0

D 。

其中,0Λ是判决门限,本题中001()()P H P H Λ=

=667.06

.04

.0=。

3、Bayes 判决准则如下,风险函数是各个概率的线形组合:

0000010110101111(,)(,)(,)(,)R C P D H C P D H C P D H C P D H =+++

很多情况下,可以令00110C C ==,即正确判断是不具有风险的,此时判决公式为: 如果

10010011()

(|)(|)()

C P H p x H p x H C P H >,判为1

D ;否则,判为0D 。本题中,102C =,011C =故

判决门限0Λ为

3

4

6.0*14.0*2=。

4、做M=100000次统计,在有信号到达的情况下,即()()()x t s t n t =+,每次出现

'signal is detected'时,检测到信号的次数n0加1,出现'no signal'时,没有检测

到信号的次数n1加1;在没有信号到达的情况下,即()()x t n t =,每次出现'signal is

detected'时,检测到信号的次数n2加1,出现'no signal'时,没有检测到信号的次数

n3加1。则:

检测概率D P =n0/M ;虚警概率f P =n2/M ;漏警概率m P =n1/M ;

Bayes 风险0000010110101111(,)(,)(,)(,)R C P D H C P D H C P D H C P D H =+++ =D f m f P C P C P C P C 11100100)1(+++-=f m P C P C 1001+

5、用相同的方法,通过改变判决的门限,观察检测方法的D P 、f P 、m P 和Bayes 风险的变化。

6、用相同的方法,通过改变噪声的方差,观察检测方法的D P 、f P 、m P 和Bayes 风险的变化。

7、设计匹配滤波器h(t)=c*s(T-t),通过使待检测信号x(t)经过匹配滤波器,即和h(t)进行卷积,得到滤波以后的输出X(t)。 五、实验结果及分析:

1、利用似然比检测方法(最小错误概率准则),对信号是否到达进行检测。 实验得到的波形如下:

对302个抽样点进行了五次检测,得到结果如下:

检测到信号的次数C 平均值

275 257 276 272 267 270

分析:可能由于高斯白噪声的影响较大,故有些信号没有被检测出来。

2、假设102C =,011C =。利用基于Bayes 准则的检测方法,对信号是否到达进行检测。 同样地,对302个抽样点进行了五次检测,得到结果如下:

检测到信号的次数C 平均值

253 236 244 236 243 242

分析:比较可得,在本题设定的风险系数下,基于Bayes 准则的检测方法没有似然比检测方法可靠。

3、通过计算机产生的仿真数据,对两种方法的检测概率d P 、虚警概率f P 、漏警概率m P 和

Bayes 风险进行仿真计算。

采用似然比检测方法得到的仿真结果如下:

pd=0.8855,pf=0.2140,pm=0.1145,r=0.5424。 利用基于Bayes 准则的检测方法得到的仿真结果如下: Pd=0.8032,Pf=0.1264,Pm=0.1968,r=0.4496。 比较可得:

采用似然比检测方法得到的检测概率较大,漏警概率较小;基于Bayes 准则的检测方法得到的虚警概率较小,风险系数较小。

4、通过改变P(H 1)和P(H 0)来改变判决的门限(风险系数10C 和01C 不变),观察检测方法的

d P 、f P 、m P 和Bayes 风险的变化。

(1)似然比检测方法

)

()

(10H P H P

d P

f P

m P

Bayes 风险 326.04.0=

0.8855 0.2140 0.1145 0.5424 15.05.0= 0.8425 0.1581 0.1576 0.4738 234.06.0= 0.7899 0.1162 0.2101 0.4424 91

.09.0= 0.4595

0.0176

0.5405

0.5758

由表格可以看出当门限升高时检测概率降低,虚警概率降低,漏警概率升高,bayes 风险值变化不大。没有信号到达的概率越高,检测概率和虚警概率就越低,漏警概率越高,实际值符合理论分析。

(2)基于Bayes 准则的检测方法

)

()(101010H P C H P C

d P f P

m P Bayes 风险 346.04.0*2= 0.8032 0.1264 0.1968 0.4496 25.05.0*2= 0.7464 0.0886 0.2536 0.4309 34.06.0*2= 0.6748 0.0610 0.3252 0.4472 181

.09.0*2= 0.3284

0.0071

0.6716

0.6858

由表格可以看出当门限升高时检测概率降低,虚警概率降低,漏警概率升高。没有信号到达的概率越高,检测概率和虚警概率就越低,漏警概率越高,实际值符合理论分析。由于虚警概率降低,并且相乘得出风险时前面系数较大,所以风险先降低,后来由于漏警概率的升高已经大过于虚警概率对风险的影响,所以后来风险又升高。

5、改变噪声的方差,观察检测方法的d P 、f P 、m P 和Bayes 风险的变化。 (1)似然比检测方法

d P f P

m P

Bayes 风险 9 0.9540

0.0599

0.0360 0.1559 25 0.8855 0.2140 0.1145 0.5424 36 0.8582 0.2785 0.1418 0.6988 49 0.8393

0.3331

0.1607

0.8268 (2)基于Bayes 准则的检测方法

d P f P m P

Bayes 风险

9 0.9432 0.0301 0.0568 0.1170 25 0.8032 0.1264 0.1968 0.4496 36 0.7448 0.1057 0.2552 0.4666 49 0.6949 0.1138 0.3051 0.5327 由表格可以看出当噪声方差增大时,两种检测方法得到的检测概率均降低,虚警概率均升高,漏警概率均升高,风险值均增大。这是因为噪声方差越大,对信号的干扰越大,检测信号越困难,即两种方法的可靠性越差。

6、将信号取样间隔减小一倍(相应的取样点数增加一倍),观察似然比检测方法的d P 、f P 、

m P 和Bayes 风险的变化。

之前的结果:

pd=0.8855,pf=0.2140,pm=0.1145,r=0.5424 取样点数增加一倍后的结果为:

pd=0.9397,pf=0.1007,pm=0.0603,r=0.2617

比较可得,取样点数增加一倍后,检测可信度大为提高。

7、根据()s t 设计一个离散匹配滤波器,并观察()x n 经过该滤波器以后的输出。 设计的滤波器波形如下:

有信号和无信号状态下的x (t )经过滤波器后的输出分别如下:

分析:当t=300时,有信号时的输出值达到最大,无信号时的输出值为0,这说明匹配滤波器对有用信号分量有放大作用,对干扰信号有抑制作用,有利于信号的检测。

源程序:

%1

%产生信号s(t),n(t),x(t)

t=0:29;

s1=t/30;

t=30:89;

s2=-t/30+2;

t=90:139;

s3=t/25-4.6;

t=140:189;

s4=-t/25+6.6;

t=190:229;

s5=t/20-10.5;

t=230:269;

s6=-t/20+12.5;

t=270:289;

s7=t/10-28;

t=290:301;

s8=-t/10+30;

s=[s1 s2 s3 s4 s5 s6 s7 s8];

p0=0.4;

p1=0.6;

for t=1:302

n=5.*randn(1,302);

x=s+n;

figure(1);

subplot(3,1,1);grid;plot(s);axis([0,301,-1,1]);xlabel('t/ms');ylabel( 's(t)');

subplot(3,1,2);grid;plot(n);axis([0,301,-20,20]);xlabel('t/ms');ylabe l('n(t)');

subplot(3,1,3);grid;plot(x);axis([0,301,-20,20]);xlabel('t/ms');ylabe l('x(t)');

%利用似然比检测方法检测信号是否到达

x1=x.*s;

x2=s.*s;

if sum(x1)>25*log(p0/p1)+0.5*sum(x2)

count(t)=1;

'signal is detected'

else

count(t)=0;

'no signal'

end;

高等学校实验室信息统计

高等学校实验室信息统计 报表填报说明 一、报表及命名 基表:是反映高等学校实验室基本情况的基础报表。 综表:是由基表数据经软件(统计)生成的反映高等学校实验室情况的综合报表。 注: 1.各报表制成TXT格式的文本文件,报表命名中后5位(99999)为学校代码。 2.各报表均按学年(指教育年度,即从每年的九月一日到第二年的八月三十一日)进行统计。

3.各报表均为校级上报和省级汇总上报通用表式。 二、各报表填报说明 基表一教学科研仪器设备表 (SJ1) 本表中的仪器设备是指教学、科研单位中,单价在人民币800元(含)以上,使用方向为教学或科研的仪器设备。《高等学校固定资产分类及编码》中的01类(房屋及构筑物)、02类(土地及植物)、11类(图书)、13类(家具)、15类(被服装具)、16类(牲畜)不属于上报范围。计算机软件作为仪器设备的附件上报,不作为单台件上报。 1.学校代码:数据格式为字符型,长度为5。按教育部规定的高等学 校5位数字码填报,具体代码可访问中国教育统计网站:.cn/。 2.仪器编号:数据格式为字符型,长度为8。学校内部使用的仪器设 备编号,在本校内具有唯一性。 3.分类号:数据格式为字符型,长度为8。指对仪器设备进行统一分 类的编码,按教育部高教司颁发的《高等学校固定资产分类及编码》填写,不得自行增加,若无对应编码,填上一级编码,编码末位填“00”补齐8位。 4.仪器名称:数据格式为字符型,长度为30。用汉字表示,不能为 空,与《高等学校固定资产分类及编码》中的分类号所对应的名称一致,若无对应名称,则填写仪器设备标牌的汉字名称或规范的中文翻译名称。 5.型号:数据格式为字符型,长度为20。按仪器设备标牌或说明书

信号的统计检测理论

信号的统计检测理论 信号的统计检测理论是随机信号处理的基础理论之一。在随机信号特性统计描述的基础上,研究信号状态的最佳判决及其检测性能,是信号统计检测理论的主要任务。 本章概述了信号统计检测的基本概念、合理判决方法、判决结果和判决概率;重点讨论了信号统计检测各种最佳的概念、最佳判决式和检测性能的分析方法及参量信号的最佳检测理论和方法;还讨论了信号的序列检测,一般高斯信号的检测及复信号的检测等问题。 1.贝叶斯准则 在二元信号情况下,考虑判决概率P(H i |H j ),各假设H j 的先验概率P(H j )和各种判决所付出代价的代价因子c ij (i,j =0,1;c ij,i ≠j >c jj ),其平均代价为 C = c ij P(H j )P(H i |H j )1 i=0 1j=0 (.2) 所谓贝叶斯准则,就是在假设H j 的先验概率P(H j )已知,各种判决代价因子c ij 给定的情况下,使平均大家C 最小的准则。 贝叶斯准则的最佳判决式,其似然比检验形式为 λ(x )?p (x |H 1)p (x |H 0) H 1?H 0 P H 0 (c 10?c 00)P H 1 (c 01?c 11)?η 式中,λ(x)是似然比函数,决定于观测信号(x|H j )的统计特性,与P(H j ),c ij 无关;η是似然比门限,决定于P(H j )和c ij ,与(x|H j )的统计特性无关。这样,能够实现任意(x|H j )统计特性下和任意P(H j ),c ij 下使平均代价C 最小的最佳信号检测。 2.最小平均错误概率准则 如果假设H j 的先验概率P H j (j =0,1)已知,各种判决的代价因子c ij =1?δij ,则平均错误概率 P e = P H j P H i H j 1 i=0 i ≠j 1j=0=P H 0 P H 1 H 0 +P H 1 P H 0 H 1 .7 使平均错误概率P e 最小的准则,称为最小平均错误概率准则。 最小平局错概率准则的似然比检验形式为 λ(x)?p(x|H 1)p(x|H 0)H 1?H 0 P H 0 P H 1 ?η 如果假设H j 的先验概率相等,即P H 0 =P H 1 ,则η=1,称为最大似然比准则。 3.奈曼—皮尔逊准则 在错误判决概率P H 1 H 0 =α约束下,使正确判决概率P H 1 H 1 最大的准则,称为奈曼—皮尔逊准则。 奈曼—皮尔逊准则的似然比检验形式为

东南大学电路实验实验报告

电路实验 实验报告 第二次实验 实验名称:弱电实验 院系:信息科学与工程学院专业:信息工程姓名:学号:

实验时间:年月日 实验一:PocketLab的使用、电子元器件特性测试和基尔霍夫定理 一、仿真实验 1.电容伏安特性 实验电路: 图1-1 电容伏安特性实验电路 波形图:

图1-2 电容电压电流波形图 思考题: 请根据测试波形,读取电容上电压,电流摆幅,验证电容的伏安特性表达式。 解:()()mV wt wt U C cos 164cos 164-=+=π, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R C sin 213.0== =∴,ππ40002==T w ; 而()mA wt dt du C C sin 206.0= dt du C I C C ≈?且误差较小,即可验证电容的伏安特性表达式。 2.电感伏安特性 实验电路: 图1-3 电感伏安特性实验电路 波形图:

图1-4 电感电压电流波形图 思考题: 1.比较图1-2和1-4,理解电感、电容上电压电流之间的相位关系。对于电感而言,电压相位 超前 (超前or 滞后)电流相位;对于电容而言,电压相位 滞后 (超前or 滞后)电流相位。 2.请根据测试波形,读取电感上电压、电流摆幅,验证电感的伏安特性表达式。 解:()mV wt U L cos 8.2=, ()mV wt wt U R sin 10002cos 1000=??? ? ? -=π,us T 500=; ()mA wt R U I I R R L sin 213.0===∴,ππ 40002==T w ; 而()mV wt dt di L L cos 7.2= dt di L U L L ≈?且误差较小,即可验证电感的伏安特性表达式。 二、硬件实验 1.恒压源特性验证 表1-1 不同电阻负载时电压源输出电压 电阻()Ωk 0.1 1 10 100 1000 电源电压(V ) 4.92 4.98 4.99 4.99 4.99 2.电容的伏安特性测量

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理实验

实验一 离散傅里叶变换(DFT )对确定信号进行谱分析 一.实验目的 1.加深对DFT 算法原理和基本性质的理解。 2.熟悉DFT 算法和原理的编程方法。 3.学习用DFT 对信号进行谱分析的方法,了解可能出现的误差及其原因,以便在实际中正确利用。 二.实验原理 一个连续信号)(t x a 的频谱可以用其傅里叶变换表示,即 dt e t x j X t j a a Ω-∞ ∞ -? = Ω)()( 若对)(t x a 进行理想采样可得采样序列 )(|)()(nT x t x n x a nT t a === 对)(n x 进行DTFT ,可得其频谱为: ∑∞ -∞ =-= n n j j e n x e X ωω )()( 其中数字频率ω与模拟频率Ω的关系为: s f T Ω = Ω=ω )(n x 的DFT 为∑∞ -∞ =-= n nk N j e n x k X π 2)()( 若)(t x a 是限带信号,且在满足采样定理的条件下,)(ω j e X 是)(Ωj X a 的周期延拓, )(k X 是)(ωj e X 在单位圆上的等间隔采样值,即k N j e X k X πωω2| )()(= =。 为在计算机上分析计算方便,常用)(k X 来近似)(ω j e X ,这样对于长度为N 的有限 长序列(无限长序列也可用有限长序列来逼近),便可通过DFT 求其离散频谱。 三.实验内容 1.用DFT 对下列序列进行谱分析。 (1))()04.0sin(3)(100n R n n x π=

1 (2)]0,0,0,0,0,0,0,0,1,1,1,1[)(=n x 2.为了说明高密度频谱和高分辨率频谱之间的区别,考察序列 )52.0cos()48.0cos()(n n n x ππ+= (1)当0≤n ≤10时,确定并画出x(n)的离散傅里叶变换。 (2)当0≤n ≤100时,确定并画出x(n)的离散傅里叶变换。 四.实验结果 1. (1) (2)

随机信号处理实验

随机信号处理实验 专业:电子信息科学与技术 班级: 学号: 学生姓名: 指导教师:钱楷

一、实验目的 1、熟悉GUI 格式的编程及使用。 2、掌握随机信号的简单分析方法 3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 3、熟悉各种随机信号分析及处理方法。 4、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理 1、语音的录入与打开 在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。[N1 N2]表示读取从N1点到N2点的值。 2、高斯白噪声 白噪声信号是一个均值为零的随机过程,任一时刻是均值为零的随机变量,而服从高斯分布的白噪声即称为高斯白噪声。在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。 3、均值 随机变量X 的均值也称为数学期望,它定义为:,对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为,则均值定义为E(X)=,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。 4、方差 定义为随机过程x(t)的方差。方差通常也记为 D[X (t )] ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。 5、协方差 设两个随机变量X 和Y ,定义:为X 和Y 的协方差。其相关函数为: ?? +∞∞-+∞ ∞ -= =dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(212121 由此可见协方差的相关性 与X 和Y 是密切相关的,表征两个函数变化的相似性。 5、协方差 设任意两个时刻1t , 2t ,定义: 为随机过程X (t )的自相关函数,简称为相关函数。自相关函数可正,可负,其绝对值越大表示相关性越强。 7、互相关 互相关函数定义为: 如果X (t )与Y (t )是相互独立的,则一定是不相关的。反之则不一定成立。它是两个随机过程联合统计特性中重要的数字特征。 8、平滑滤波 平滑滤波可以与中值滤波结合使用,对应的线性平滑器可以仅仅用低阶的低通滤波器(如果采用高阶的系统,则将抹掉信号中应该保存的不连续性)。 121212121212 (,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞ -∞ ==???? +∞∞-+∞ ∞ -==dxdy t t y x xyf t Y t X E t t R XY XY ),,,()}()({),(212121

东南大学通信复试数字信号处理(吴镇杨)课后答案

习题一 (离散信号与系统) 1.1周期序列,最小周期长度为5。 1.2 (1) 周期序列,最小周期长度为14。(2) 周期序列,最小周期长度为56。 1.5 ()()()()()()()1 1s a s s s a n s s a s n X j x t p t X j ΩP j Ω2n τn τj sin j Ωjn e X 2n π 2n n τj Sa X j jn e 2T 2π ττ ∞ =-∞∞ =-∞Ω== *????ΩΩ??-=-Ω ???ΩΩ??-=Ω-Ω ??? ∑∑F 1.6 (1) )(ω j e kX (2) )(0 ω ωj n j e X e (3) )(2 1 )(2122ω ωj j e X e X -+ (4) )(2ωj e X 1.7 (1) 0 n z -(2) 5.0||,5.011 1 >--z z (3) 5.0||,5.011 1 <--z z (4) 0||,5.01)5.0(11 10 1>----z z z 1.8 (1) 0,)11( )(2 1 1 >--=---z z z z z X N (2) a z az az z X >-=--, )1()(211 (3) a z az z a az z X >-+=---, )1()(3 11 21 1.9 1.10 (1) )1(2)(1----+n u n u n (2) )1(24)()5.0(6--?--n u n u n n (3) )()sin sin cos 1(cos 00 0n u n n ωωωω++ (4) )()()(1n u a a a n a n ---+-δ 1.11 (1) )(1 z c X - (2) )(2 z X (3) )()1(2 1 z X z -+ (4) -+<

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

《统计信号处理基础》实验四

实验报告 姓名: 实验名称: 学号: 课程名称: 班级: 实验室名称: 组号: 实验日期: 一、实验目的、要求 本实验的目的是在了解了Matlab 编程语言的编程和调试的基础上,利用Matlab 本身自带的函数来展示不同功率谱估计的性能。试验内容涉及非参数化功率谱估计、参数化功率谱估计、频率估计等内容。本实验主要是为了让学生在充分理解不同的功率谱估计方法之间的性能差异,通过计算机仿真和多次重复来验证理论上的结论 要求包括以下几个部分: 1.要求独立完成实验的内容所要求的各项功能,编制完整的Matlab 程序,并在程序中注释说明各段程序的功能。 2.要填写完整的实验报告,报告应包含程序、图形和结论。要求记录在实验过程中碰到的问题,以及解决的方法和途径。 二、实验原理 实验1.宽带AR 过程()x n 是由单位方差的高斯白噪声通过滤波器 1221 ()(10.50.5)(10.5) H z z z z ---= -++ 实验 2. 本实验是验证最大熵方法的功率谱估计。 对随机过程()()()y n x n w n =+, ()w n 是方差为2 w σ的白高斯噪声,()x n 是(2)AR 过程,由单位方差的白噪声通过如下滤波 器所获得 12 1 ()1 1.5850.96H z z z --= -+ 三、实验环境 验所要求的设备: 每组包含完整的计算机 1 台; 可共用的打印机1台,A4纸张若干; 计算机上安装的软件包括: Matlab 6.5以上(应包含Signal Processing Toolbox, Filter

Design Toolbox ); Word 2000以上; 五、实验过程、数据记录、处理及结论 实验1 1221 ()(10.50.5)(10.5) H z z z z ---= -++ a. 生成()x n 的256N =个样本,取4p =并用自相关方法来计算功率谱,画出估计的功率谱并与真实功率谱相比。 clear all;close all; a=[1,-0.5,1,-0.25,0.25]; p=4; N=256;%数据长度 M=100; w=[0:pi/M:pi-pi/M]; v=randn(1,N); x=filter(1,a,v); [a1,err] = acm(x,p); h0=freqz(1,a,M); A=zeros(1,M); for m=2:p+1; A=A+a1(m)*exp(-j*m*w); end A=abs(A+1); Pw=1./(A.^2);%%%估计功率谱 A1=zeros(1,M); for k=2:5 A1=A1+a(k)*exp(-j*k*w); end A1=abs(A1+1); Pw1=1./A1.^2;%%%%%%%%%%%理论功率谱 figure(1) plot(w,Pw1,'-bo',w,Pw,'-b.');title('功率谱');xlabel('K');ylabel('幅值');hleg1=legend('理论功率谱','估计功率谱'); b. 重复a 中的计算20次,分别画出20次的重迭结果和平均结果。评论估计的方差并 说明怎样才能提高自相关方法估计功率谱的精度; clear all;close all; a=[1,-0.5,1,-0.25,0.25];%%%%%宽带AR 过程 %a=[ 1 -2.737 3.74592 -2.62752 0.9216];%%%%%%%%%%%窄带AR 过程 p=4;%功率谱数据长度 M=100;%%% N=256;%数据长度 w=[0:pi/M:pi-pi/M];

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

东南大学仪科数字信号处理作业

1.已知f(t)的傅里叶变换是F(w),求下列信号的傅里叶变换表达式(a,b,w0为常数):1) 2) (2+2t)f(t-1) 3) 4) f(t)* 5) 6) f(t)sin[w0(t+a)] 解: 1) 2) 3) 4) 5) 6)f(t)sin[w0(t+a)]=f(t)sin(w0t)cos(w0a)+f(t)cos(w0t)sin(w0a) 2.已知如图2-15所示的信号f(t),求:1)指数形式与三角形式的傅里叶变换级数;2)

傅里叶变换F(w),并画出频谱图。

解: 1)三角形式: T1=4,w1= a0= an= 由f(t)为偶函数得,bn=0 所以,f(t)=1+ 指数形式: F(nw1)= f(t)= 2)F(n)= F(w)= 3.已知如图2-16所示的信号f(t),求指数形式与三角形式的傅里叶变换级数,并画出频 谱图。 解: 指数形式: T1=2T,w1

F(nw1)= f(t)= 三角形式: a0= an= bn= f(t)=+ 4.将下列信号早区间(-,)中展开为指数形式的傅里叶级数:1)f1(t)=2t 2)f2(t)=0.5|t| 解: T=2,w1= 1)因为f1(t)为奇函数,a0=0,an=0 bn= f1 (t)= 2)因为f2(t)为奇函数,bn=0 a0= an= f(t)=+ 5.将下列信号在区间(0,1)中展开为指数形式的傅里叶级数:1)f1(t)=t4 2)f2(t)=e2t 解: T=1,w1 1)F(n)= f(t)=

2)F(n)=

f(t)= 6. 已知如图2-17所示的信号f(t),利用微分性质求该信号的傅立叶变换F(w)。 012 图2-17 答案: 7. 已知,求F(w)。 答案: (?) 8. 求下列函数的傅立叶变换: 1) 2) 3) 答案: 1) 2) 3)

随机信号处理实验报告讲解

随机信号处理实验报告

目录 一、实验要求: (3) 二、实验原理: (3) 2.1 随机信号的分析方法 (3) 2.2 随机过程的频谱 (3) 2.3 随机过程的相关函数和功率谱 (4) (1)随机信号的相关函数: (4) (2)随机信号的功率谱 (4) 三、实验步骤与分析 (5) 3.1实验方案 (5) 3.2实验步骤与分析 (5) 任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5) 任务二:(s1 变量)求噪声下正弦信号的相位 (8) 任务三:(s1 变量)求信号自相关函数和功率谱 (11) 任务四:(s变量)求噪声下信号的振幅和频率 (14) 任务五:(s变量)求信号的自相关函数和功率谱 (17) 3.3实验结果与误差分析 (19) (1)实验结果 (19) (2)结果验证 (19) (3)误差分析 (21) 四、实验总结和感悟 (22) 1、实验总结 (22) 2、实验感悟 (23) 五、附低通滤波器的Matlab程序 (23)

一、实验要求: (学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。 二、实验原理: 2.1 随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。 2.2 随机过程的频谱 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: ()()2j ft X f x t e dt π+∞ --∞ =? 信号的时域描述只能反映信号的幅值随时间的变化情况,除只有一个频率分量的简谐波外,一般很难明确揭示信号的频率组成和各频率分量的大小。信号的频谱X(f)代表了信号在不同频率分量处信号成分的大小,它能够提供比时域信号波形更直观,丰富的信息。 在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT),因此需要利用离散信号x(nT)来计算信号x(t)的频谱。

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学自控实验报告实验三闭环电压控制系统研究

东南大学 《自动控制原理》 实验报告 实验名称:实验三闭环电压控制系统研究 院(系):专业: 姓名:学号: 实验室: 416 实验组别: 同组人员:实验时间:年 11月 24日评定成绩:审阅教师:

实验三闭环电压控制系统研究 一、实验目的: (1)经过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)经过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表示、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。因此,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就能够“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式能够做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的

闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制能够带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。经过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也能够认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤: (1)如图接线,建议使用运算放大器U8、U10、U9、U11、U13。

统计信号处理实验四东南大学

统计信号处理 实验四 《统计信号处理》实验四 目的: 掌握自适应滤波的原理; 内容一: 假设一个接收到的信号为:x(t)=s(t)+n(t), 其中s(t)=A*cos(wt+a), 已知信号的频率w=1KHz,而信号的幅度和相位未知,n(t)是一个服从N(0,1)分布的白噪声。为了利用计算机对信号进行处理,将信号按10KHz的频率进行采样。 1) 通过对x(t)进行自适应信号处理,从接收信号中滤出有用信号s(t); 2)观察自适应信号处理的权系数; 3)观察的滤波结果在不同的收敛因子u下的结果,并进行分析; 4)观察不同的抽头数N对滤波结果的影响,并进行分析; 内容二: 在实验一的基础上,假设信号的频率也未知,重复实验一; 内容三: 假设s(t)是任意一个峰峰值不超过1的信号(取幅度为的方波),n(t)是一个加在信号

中的幅度和相位未知的,频率已知的50Hz单频干扰信号(假设幅度为1)。信号取样频率1KHz,试通过自适应信号处理从接收信号中滤出有用信号s(t)。 要求: 1)给出自适应滤波器结构图; 2)设计仿真计算的Matlab程序,给出软件清单; 3)完成实验报告,对实验过程进行描述,并给出试验结果,对实验数据进行分析。实验过程: 1、假设一个接收到的信号为:d(t)=s(t)+n(t), 其中s(t)=A*cos(wt+a), 已知信号的频率w=1KHz,而信号的幅度和相位未知,n(t)是一个服从N(0,1)分布的白噪声。为了利用计算机对信号进行处理,将信号按10KHz的频率进行采样。 1)参考信号d(k)=s(k)+n(k),s(k)=A*cos(wk+a),产生一个与载波信号具有相同频率的正弦信号作为输入信号() x k,即x(k)=cos(wk)。经过自适应处理后,就可以在输出信号() y k端得到正确的载波信号(包含相位和幅度)。 框图如下: 2)改变收敛因子 μ,观察滤波结果。 3)改变滤波器抽头数N,观察滤波结果。 2、在实验一的基础上,假设信号的频率也未知,重复实验一。 参考信号d(k)=s(k)+n(k),s(k)=A*cos(wk+a),将参考信号延时一段时间后得到的信号作为输入信号() x k,即x(k)=d(k-m)。经过自适应处理后,就可以在误差输出端y(k)得到正确的载波信号(包含频率、相位和幅度)。 3、假设s(t)是任意一个峰峰值不超过1的信号(取幅度为的方波),n(t)是一个加在信号中的幅度和相位未知的,频率已知的50Hz单频干扰信号(可以假设幅度为1)。信号取样频率1KHz,试通过自适应信号处理从接收信号中滤出有用信号s(t)。 我们可以使用陷波滤波器对噪声进行滤除,但普通滤波器一旦做成,其陷波频率难以调整。如果使用自适应陷波滤波器,不仅可以消除单频干扰,而且可以跟踪干扰的频率变化,持续消噪。 自适应陷波滤波器的原理框图如下图所示: 假如输入信号是一个纯余弦信号 () cos C t ω? + ,则可将其分为两路,将其中一路进行

东南大学系统实验报告

实验八:抽样定理实验(PAM ) 一. 实验目的: 1. 掌握抽样定理的概念 2. 掌握模拟信号抽样与还原的原理和实现方法。 3. 了解模拟信号抽样过程的频谱 二. 实验内容: 1. 采用不同频率的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱。 2. 采用同一频率但不同占空比的方波对同一模拟信号抽样并还原,观测并比较抽样信号及还原信号的波形和频谱 三. 实验步骤: 1. 将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。 2. 插上电源线,打开主机箱右侧的交流开关,在分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。 3. 信号源模块调节“2K 调幅”旋转电位器,是“2K 正弦基波”输出幅度为3V 左右。 4. 实验连线 5. 不同频率方波抽样 6. 同频率但不同占空比方波抽样 7. 模拟语音信号抽样与还原 四. 实验现象及结果分析: 1. 固定占空比为50%的、不同频率的方波抽样的输出时域波形和频谱: (1) 抽样方波频率为4KHz 的“PAM 输出点”时域波形: 抽样方波频率为4KHz 时的频谱: 50K …… …… PAM 输出波形 输入波形

分析: 理想抽样时,此处的抽样方波为抽样脉冲,则理想抽样下的抽样信号的频谱应该是无穷多个原信号频谱的叠加,周期为抽样频率;但是由于实际中难以实现理想抽样,即抽样方波存在占空比(其频谱是一个Sa()函数),对抽样频谱存在影响,所以实际中的抽样信号频谱随着频率的增大幅度上整体呈现减小的趋势,如上面实验频谱所示。仔细观察上图可发现,某些高频分量大于低频分量,这是由于采样频率为4KHz ,正好等于奈奎斯特采样频率,频谱会在某些地方产生混叠。 (2) 抽样方波频率为8KHz 时的“PAM 输出点”时域波形: 2KHz 6K 10K 14K 输入波形 PAM 输出波形

数字信号处理期末试卷(含答案)

数字信号处理期末试卷 一、填空题:(每空1分,共18分) 1、数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。 2、双边序列z 变换的收敛域形状为 圆环或空集 。 3、某序列的DFT 表达式为∑-==1 0)()(N n kn M W n x k X ,由此可以看出,该序列 时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是 M π 2 。 4、线性时不变系统离散时间因果系统的系统函数为 2 52)1(8)(22++--=z z z z z H ,则系统的极点为 2,21 21-=-=z z ;系 统的稳定性为 不稳定 。系统单位冲激响应)(n h 的初值 4)0(=h ;终值)(∞h 不存在 。 5、如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列) (n h 是一长度为128点的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。 6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率 Ω与数字频率ω之间的映射变换关系为T ω= Ω。用双线性变换法将一 模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为)2tan(2ωT = Ω或)2 arctan(2T Ω=ω。 7、当线性相位FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为)1()(n N h n h --= ,此时对应系统的频率响应 )()()(ω?ωωj j e H e H =,则其对应的相位函数为ωω?2 1 )(-- =N 。 8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。 二、判断题(每题2分,共10分) 1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要 加 一 道 采 样 的 工 序 就 可 以 了 。 (╳) 2、已知某离散时间系统为)35()]([)(+==n x n x T n y ,则该系统为线性时 不变系统。(╳) 3、一个信号序列,如果能做序列的傅里叶变换(DTFT ),也就能对其做DFT 变换。(╳) 4、用双线性变换法进行设计IIR 数字滤波器时,预畸并不能消除变换中产 生 的 所 有 频 率 点 的 非 线 性 畸 变 。 (√) 5、阻带最小衰耗取决于窗谱主瓣幅度峰值与第一旁瓣幅度峰值之比。 (╳) 三、(15分)、已知某离散时间系统的差分方程为

视野检查实验报告

视野检查实验报告 篇一:视野检查实验报告 彩色分辨视野测定实验报告 学号:02a14541姓名:庄加华高意日期:摘要:本实验旨在学习视野计的使用方法和视野的检查方法,并了解测定视野的意义,比较左 右视野的异同并指出盲点在视网膜上的位置并计算它的大小。实验以一名大学生为被试,用 彩色视野计测定被试的视野以及盲点范围。研究结果表明: (1)被试视野范围红色视标上方为40,鼻侧72°,下方50°,颞侧65°。 (2)被试左右两眼的视野范围都大致呈椭圆形,视野在不同角度上可以看到的范围是不一

样的,在鼻侧要小于颞侧,上方小于下方。引言: 视野是指当人的头部和眼球不动时,人眼能观察到的空间范围通常以角度表示。人的视 野范围,在垂直面内,最大固定视野为115°,扩大的视野范围为150°;在水平面内,最大 固定视野为180°,扩大的视野为190°。人眼最佳视区上下,左右视野均为只有°左右;良好视野范围,位于在垂直面内水 平视线以下30°和水平面内零线左﹑右两侧各15°的范围内;有效视野范围,位于垂直面内 水平视线以上25°,以下35°,在水平面内零线左右各35°的视野范围。在垂直面内,实际上人的自然视线低于水平视线,直立时低15°,放松站立时低30°,放松坐姿时低40°,因此,视野范围在垂直面内的下界限也应随放松坐姿,放松立姿而改变。色觉视野,不同颜色对人眼的刺激不同,所以视野也不同。白色视野最大,黄﹑蓝﹑红 ﹑绿的视野依次减小。方法: 被试者

东南大学机械学院20XX级一名本科生,男,年龄为20,视力正常 仪器与材料 彩色分辨视野计,红色视标,视野图纸,铅笔 实验设计采用双因素被试内设计,自变量为左右眼和角度,因变量为被试看到的视野范围。 实验程序 准备工作 1、把视野图纸安放在视野计背面圆盘上,学习在图纸 上做记录的方法。(记录时与被试 反应的左右方位相反,上下方位颠倒)。 2、主试选择一种某一大小及颜色(如红色)的刺激。 3、让被试坐在视野计前。被试戴上遮眼罩把左眼遮起来,下巴放在仪器的支架上,用右 眼注视正前方的黄色注视点,一定不要转动眼睛。同时用余光注意仪器的半圆弧。如果看到 弧上有红色的圆点,或者原来看到了红色后来又消失了,要求立即报告出来。在红点消失前,

东南大学dsp实验报告

DSP实验报告 实验四:IIR数字滤波器的设计实验五:FIR数字滤波器的设计

实验四、IIR数字滤波器的设计 【1】f c = 0.3kHz,delta = 0.8dB,fr = 0.2kHz,At = 20dB,T = 1ms:设计一切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 实验结果: 实验代码: >> Wc = 2*pi*300/1000; Wr = 2*pi*200/1000; Rp = 0.8; Rs = 20; [N,Wc] = cheb1ord(Wc,Wr,Rp,Rs,'s'); [B,A] = cheby1(N,Rp,Wc,'high','s'); omega = [0:pi/1000:pi];

h = freqs(B,A,omega); gain = 20*log10(abs(h)); plot(omega/(2*pi/1000),gain); 结果分析: 由实验所得关于设计的滤波器的增益曲线来看,当f<200Hz时, 衰减大于20dB,当f>300Hz时,衰减趋近于零,满足设计参 数要求。 【5】利用双线性变换法设计满足下列指标的切比雪夫型数字带阻滤波器,并作图验证设计结果:当1kHz<=f<=2kHz时,At>=18dB;当 f<=500Hz以及f>=3kHz时,delta<=3dB;采样频率fs = 10kHz。 实验结果 程序代码: >> W1 =2*10000*tan(2*pi*500/(2*10000));

W2 =2*10000*tan(2*pi*1000/(2*10000)); W3 =2*10000*tan(2*pi*2000/(2*10000)); W4 =2*10000*tan(2*pi*3000/(2*10000)); Wp = [W2,W3]; Ws = [W1,W4]; [N,Wn] = cheb1ord(Wp,Ws,3,18,'s'); [B,A] = cheby1(N,3,Wn,'stop','s'); [num,den] = bilinear(B,A,10000); [h,w] = freqz(num,den); f = w/pi*5000; plot(f,20*log10(abs(h))); axis([0,3500,-100,10]); 结果分析: 根据设计要求,取要求中的参数值为极限值,所得滤波器增益曲线如 上图。由图可知当频率在1kHz到2kHz之间时,增益衰减大于18dB, 当频率小于500或大于3000Hz时,增益略小于1,通带波动delta小 于3dB,满足设计需求。 实验五、FIR数字滤波器的设计 【1】N = 45,计算并画出矩形窗、汉明窗、布莱克窗的归一化幅度谱,并比较各自的主要特点。

相关文档
相关文档 最新文档