2019年全国高考文科数学分类汇编---概率统计
1(2019北京文科).改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付
金额
支付方式
不大于
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.
【答案】(Ⅰ)400人;
(Ⅱ)1 25
;
(Ⅲ)见解析.
【解析】
【分析】
(Ⅰ)由题意利用频率近似概率可得满足题意的人数;
(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;
(Ⅲ)结合概率统计相关定义给出结论即可.
【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,
所以样本中两种支付方式都使用的有1003025540
---=,
所以全校学生中两种支付方式都使用的有
40
1000400100
?=(人). (Ⅱ)因为样本中仅使用B 的学生共有25人,只有1人支付金额大于2000元,
所以该学生上个月支付金额大于2000元的概率为
125. (Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为1
25
,
因为从仅使用B 的学生中随机调查1人,发现他本月的支付金额大于2000元,
依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B 的学生中本月支付金额大于2000元的人数有变化,且比上个月多.
【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.
2.(2019全国1卷文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生
C. 616号学生
D. 815号学生
【答案】C 【解析】 【分析】
等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.
【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n
=+()n *∈N ,
若8610n =+,则1
5
n =
,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.
3.(2019全国1卷文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:
2
2
()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++
.
【答案】(1)43 ,
55
;
(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.
【解析】
【分析】
(1)从题中所给的22
?列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;
(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异. 【详解】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,
所以男顾客对商场服务满意率估计为
1404 505
P==, 50名女顾客对商场满意的有30人,
所以女顾客对商场服务满意率估计为
2303 505
P==,
(2)由列联表可知
2
2
100(40203010)100
4.762 3.841
7030505021
K
?-?
==≈>
???
,
所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.
【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2
K 的值,独立性检验,属于简单题目.
4.(2019全国2卷文科)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标概率为
A. 23
B.
35 C. 25
D. 15
【答案】B 【解析】 【分析】
本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解. 【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有
{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其
中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为
63
105
=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.
5.(2019全国2卷文科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】
本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.
【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2?+?+?=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为
39.2
0.9840
=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.
6.(2019全国2卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.
的
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表)
.(精确到0.01)
8.602≈.
【答案】(1) 增长率超过0400
的企业比例为21100,产值负增长的企业比例为2
1100
50=;(2)平均数0.3;标
准差0.17. 【解析】 【分析】
(1)本题首先可以通过题意确定100个企业中增长率超过0400
的企业以及产值负增长的企业的个数,然后
通过增长率超过0400
的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;
(2)可通过平均值以及标准差的计算公式得出结果。
【详解】(1)由题意可知,随机调查的100个企业中增长率超过0400的企业有14721+=个,
产值负增长的企业有2个,
所以增长率超过0400的企业比例为21100,产值负增长的企业比例为2
1100
50
=。
(2)由题意可知,平均值(
)20.1240.1530.3140.570.7
100
0.3y ?
+????==,
标准差的平方:
(
)()()()()222222110020.10.3240.10.3530.30.3140.50.370.70.3s 轾=?-+?+?+?+?犏臌 []1
1000.320.960.56 1.120.0296=+++=,
所以标准差0.028.6020.17s =椿。
【点睛】本题考查平均值以及标准差的计算,主要考查平均值以及标准差的计算公式,考查学生从信息题中获取所需信息的能力,考查学生的计算能力,是简单题。
7.(2019全国3卷文科)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.
1
6
B.
14
C.
13
D.
12