文档库 最新最全的文档下载
当前位置:文档库 › 酵母双杂交

酵母双杂交

知识创造未来

酵母双杂交

酵母双杂交是一种实验技术,用于研究酵母菌的互作关系和蛋白质相互作用。该技术基于酵母菌的能力,通过融合两个不同的酵母菌菌株,实现蛋白质的相互作用检测。

酵母双杂交的原理是利用一对可活化转录因子的融合蛋白,一个与实验蛋白A结合,另一个与实验蛋白B结合。当A和B结合时,转录因子活化,启动报告基因的表达。这种实验设置允许检测蛋白质A和B之间的相互作用。

通过酵母双杂交实验,可以筛查大量的蛋白质相互作用,从而揭示酵母菌细胞中复杂的信号传导网络。这种技术被广泛应用于研究酵母菌的生物学过程、蛋白质功能以及疾病机制等方面。它为揭示蛋白质相互作用网络提供了一种系统的方法。

1

酵母双杂交原理、操作方法

酵母双杂交系统 1.原理 酵母双杂交系统的建立得力于对真核细胞调控转录起始过程的认识。研究发现,许多真核生物的转录激活因子都是由两个可以分开的、功能上相互独立的结构域(domain)组成的。例如,酵母的转录激活因子GAL4,在N端有一个由147个氨基酸组成的DNA结合域(DNA binding domain,BD),C端有一个由113个氨基酸组成的转录激活域(transcription activation domain,AD)。GAL4分子的DNA 结合域可以和上游激活序列(upstream activating sequence,UAS)结合,而转录激活域则能激活UAS下游的基因进行转录。但是,单独的DNA结合域不能激活基因转录,单独的转录激活域也不能激活UAS的下游基因,它们之间只有通过某种方式结合在一起才具有完整的转录激活因子的功能。 2.试验流程 酵母双杂交系统正是利用了GAL4的功能特点,通过两个杂交蛋白在酵母细胞中的相互结合及对报告基因的转录激活来捕获新的蛋白质,其大致步骤为: 2.1、视已知蛋白的cDNA序列为诱饵(bait),将其与DNA结合域融合,构建成诱饵质粒。 2.2、将待筛选蛋白的cDNA序列与转录激活域融合,构建成文库质粒。2.3、将这两个质粒共转化于酵母细胞中。 2.4、酵母细胞中,已分离的DNA结合域和转录激活域不会相互作用,但诱饵蛋白若能与待筛选的未知蛋白特异性地相互作用,则可激活报告基因的转录;反之,则不能。利用4种报告基因的表达,便可捕捉到新的蛋白质。 3.特点 优点 蛋白--蛋白相互作用是细胞进行一切代谢活动的基础。酵母双杂交系统的建立为研究这一问题提供了有利的手段和方法。 缺点 尽管该系统己被证实为一种非常有效的方法,但它也有自身的缺点和问题。1、它并非对所有蛋白质都适用,这是由其原理所决定的。双杂交系统要求两种杂交体蛋白都是融合蛋白,都必须能进入细胞核内。因为融合蛋白相互作用激活报告基因转录是在细胞核内发生的。2、假阳性的发生较为频繁。所谓假阳性,即指未能与诱饵蛋白发生作用而被误认为是阳性反应的蛋白。而且部分假阳性原因不清,可能与酵母中其他蛋白质的作用有关。3、在酵母菌株中大量表达外源蛋白将产生毒性作用,从而影响菌株生长和报告基因的表达。 使用酵母双杂交技术应注意的问题 真正明了酵母双杂交技术的主要原理及筛选方法是进行酵母双杂交实验的前提,构建成功的诱饵质粒及大量的材料准备是进行酵母双杂交实验的保证。只有明了双杂交的原理,才有可能设计实验进程、才能有目的的进行材料准备,并能对实验结果作出预测与分析,尤其要对具体实验中各种选择性压力培养基的使用目的要十分清楚。大量的材料准备、较长的实验流程是酵母双杂交有别于其他实验的特点,而其操作技术本身并不十分困难。特别应提出的是,一个阳性克隆的编号往往要被反复记录多次,因此,要时时注意编号的正确性。另外,若从公司购得待筛选的酵母cDNA文库,应注意不同的公司有不同的产品,且各公司的

酵母双杂交

酵母双杂交系统(yeast two-hybrid system)是在酵母体内分析蛋白质-蛋白质相互作用的基因系统,也是一个基于转录因子模块结构的遗传学方法。该法由Fields等人于1989年首次建立并得到广泛地应用。酵母双杂交衍生系如酵母双杂交的二元诱饵系统、逆向双杂交系统、非转录读出特点… 酵母双杂交系统(yeast two-hybrid system)是在酵母体内分析蛋白质-蛋白质相互作用的基因系统,也是一个基于转录因子模块结构的遗传学方法。该法由Fields等人于1989年首次建立并得到广泛地应用。酵母双杂交衍生系如酵母双杂交的二元诱饵系统、逆向双杂交系统、非转录读出特点的双杂交系统(如Sos蛋白招募系统、PI3K介导的靶蛋白识别系统和断裂-泛素为基础的双杂交系统)以及转录激活因子与其相关蛋白之间的相互作用的双杂交系统(如以polⅢ为基础的杂交系统和RTA系统)等在很大程度上克服了传统酵母双杂交系统的局限性,扩大了被研究的蛋白质的范围,提高了系统的灵敏度。酵母双杂交及其衍生系统是鉴定及分析蛋白质-蛋白质、蛋白质-DNA、蛋白质-RNA相互作用的最常用、最有效的工具之一。 一、酵母双杂交系统原理 双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作表明,转录激活因子在结构上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的结构域构成, 其中有DNA结合结构域(DNA binding d omain,简称为DB)和转录激活结构域(activation d omain,简称为AD),它们是转录激活因子发挥功能所必需的。前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。二个结构域不但可在其连接区适当部位打开,仍具有各自的功能,而且不同两结构域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。单独的DB虽然能和启动子结合,但是不能激活转录。 而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的DB与大肠杆菌的一个酸性激活结构域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点①易于转化、便于回收扩增质粒;②具有可直接进行选择的标记基因和特征性报道基因;③酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。激活结构域融合基因转入表达结合结构域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道基因表达,从而可分析蛋白间的结合作用。 酵母双杂交实验常见问题 1.如果诱饵蛋白对酵母细胞是有毒的,该怎么办? 在某些情况下,在液体培养基中培养不好的菌珠可以在固体培养基上生长得很好。首先重悬克隆于1ml的SD/–Trp,接着将重

酵母双杂交原理及步骤

酵母双杂交原理及步骤 以酵母双杂交原理及步骤为标题,本文将探讨酵母双杂交的原理和步骤。酵母双杂交是一种常用的分子生物学技术,用于研究蛋白质相互作用、信号转导和基因调控等生物学过程。 酵母双杂交是一种基于酵母菌的遗传系统的实验方法,通过检测两个蛋白质是否相互作用,从而揭示它们之间的相互作用关系。这种方法的核心原理是将两个感兴趣的蛋白质分别与DNA结合域和激活域相连,当这两个蛋白质相互作用时,DNA结合域和激活域会靠近,从而激活报告基因的表达。 酵母双杂交实验的步骤如下: 1. 构建融合基因:首先需要选取两个感兴趣的蛋白质,并将它们的编码序列分别克隆到酵母双杂交载体的DNA结合域和激活域上。DNA结合域和激活域是两个功能区域,当两个蛋白质相互作用时,这两个功能区域会靠近并激活报告基因的表达。 2. 转化酵母菌:将构建好的酵母双杂交载体导入酵母菌中。酵母菌是双杂交实验中常用的宿主,因为它具有简单的遗传系统和易于生长的特点。 3. 筛选阳性克隆:将转化后的酵母菌分别接种在缺失报告基因所需的营养物的培养基上。只有当两个蛋白质相互作用时,DNA结合域

和激活域才能靠近并激活报告基因的表达,从而使酵母菌能够在缺失营养物的培养基上生长。 4. 验证相互作用:通过进一步的实验证实阳性克隆的相互作用。常用的方法包括酵母菌营养物补充实验、酵母菌生长曲线分析和蛋白质互聚实验等。 酵母双杂交技术的优点在于它能够直接在真核细胞中研究蛋白质相互作用,同时具有灵敏度高、结果可靠、重复性好等特点。然而,也需要注意到酵母双杂交实验存在一定的局限性,如假阳性和假阴性结果的可能性,以及蛋白质结构和功能的局限性等。 酵母双杂交是一种常用的分子生物学技术,通过构建融合基因、转化酵母菌、筛选阳性克隆和验证相互作用等步骤,可以研究蛋白质相互作用等生物学过程。在实际应用中,需要综合考虑实验设计、阳性和阴性对照、验证方法等因素,以确保实验结果的准确性和可靠性。

酵母双杂交 原理

酵母双杂交原理 酵母双杂交(Y2H)是一种广泛应用于分子生物学领域的实验技术。它基于酵母细胞内所含的转录因子结合区域分开的与激活区域结合的能力的原理而发展出来。 当把转录因子分成两个区域,一个称为DBD(DNA binding domain),另一个称为AD(activation domain),并使它们相互独立地与相应的配体结合时,它们就可以进行有效的转录激活。通常来说,DBD和AD都不具有激活作用,但它们可以相互结合并发挥起激活作用。因此,当DBD与某一DNA序列结合时,如果另一配体结合于AD,则该复合体就可以被转录激活。 基于这个原理,Y2H技术使用酿酒酵母(Saccharomyces cerevisiae)作为实验系统进行实验。它使用了两个重要的质粒:一个称为“鱼钩”质粒(bait plasmid),它含有DBD和一个感兴趣的基因的DNA序列;另一个称为“猎物”质粒(prey plasmid),它含有AD和另一感兴趣的基因的DNA序列。这两个质粒分别要被转化到两个不同的酿酒酵母分别作为它们的基因组。 当两个酵母的基因组都被转化后,它们被分别引入到含有选择性培养基的平板中去。在这些平板上,只有那些同时表达了成功酯化的双杂交融合DBD和AD的细胞才能成

长起来。因此,这个实验系统几乎可以保证筛选到高亲合力的蛋白质因子。 值得注意的是,由于酿酒酵母是真核生物,与含有DBD和AD的两个质粒的匹配也是在真核生物级别上完成的,而不是简单的受体和配体之间的作用。因此,这种技术可以很好地模拟在真核生物细胞内发生的相互作用。 Y2H技术不仅可以用于蛋白质因子的筛选,也可以用于检测DNA的相互作用。例如,在要求蛋白质-DNA相互作用的特定细胞系上建立的实验系统中,可以使用这种技术来筛选那些与基因诱导子结合的转录因子。因此,该技术可用于分析人类疾病中蛋白质相互作用的发生机制。 总的来说,酵母双杂交技术是一种强大而有效的分子生物学工具,可以用于研究蛋白质之间的相互作用以及转录机制。它不仅可以被用于大规模的筛选,还可以在分子水平上模拟真核生物细胞内的相互作用。在以后的研究中,这种技术还将发挥更广泛的作用,因此我们对它的进一步研究依然很有必要。

酵母双杂交实验原理及具体步骤

酵母双杂交 原理:酵母双杂交(Yeast two-hybrid,Y2H)是一种常用的蛋白质相互作用研究技术,用于检测蛋白质间的物理相互作用关系。其原理基于转录因子的两个功能域的可拆分性。①转录因子可拆分性:构建酵母诱饵(bait)和猎物(prey)表达载体:将目标蛋白分别将其编码序列分别克隆到两个表达载体中。其中,诱饵载体通常包含一个“催化域”(activation domain,AD),用于连接目标蛋白和转录激活子域;猎物载体通常包含一个“DNA结合域”(DNA binding domain,BD),与转录因子的靶位点序列结合。通过将目标蛋白的相互作用引入到转录因子中,可以重新组装功能域并激活报告基因表达。②目标蛋白的诱饵和猎物构建:将目标蛋白分别克隆到诱饵载体和猎物载体中。诱饵载体中的目标蛋白与BD结合,形成诱饵蛋白-BD复合物;猎物载体中的目标蛋白与AD结合,形成猎物蛋白-AD复合物。③互补的转录因子和报告基因:将诱饵和猎物载体转化到同一酵母细胞中,诱饵蛋白与猎物蛋白发生相互作用后,诱饵蛋白的BD域与猎物蛋白的AD域重新组装为完整的转录因子。该转录因子能够结合到特定的报告基因启动子上,激活报告基因的表达。④报告基因表达和筛选:通过培养在所选的选择性培养基上,只有发生了特定蛋白相互作用的酵母细胞才能生长。选择性培养基可能缺乏某些必需营养物质,当酵母菌株与目标蛋白质发生相互作用时,新的遗传特征和功能产物的表达则能够弥补酵母细胞在选择性培养基上的缺陷。例如,当使用缺乏组氨酸(histidine)的培养基时,只有酵母菌株表达了完整的转录因子,才能够合成组氨酸并正常生长。⑤结果验证:据此可以筛选出具有蛋白相互作用的酵母突变株。验证通常通过进一步的亲和试验(如共免疫沉淀)或其他技术(如荧光共定位)来确认蛋白质相互作用的可靠性。总体来说,酵母双杂交实验通过利用转录因子可拆分性的原理来检测蛋白质的相互作用。 方法:

酵母双杂交技术应用进展

酵母双杂交技术应用进展 酵母双杂交技术是一种强大的生物技术方法,用于研究蛋白质之间的相互作用。这项技术自20世纪80年代问世以来,已经广泛应用于基因功能研究、药物研发和生物技术应用等领域。本文将介绍酵母双杂交技术的原理、应用进展及未来展望。 酵母双杂交技术是基于真核生物体内两个互补的转录因子,即GAL4和DBD-VP16,以及一个含有报告基因的载体穿梭质粒构建而成的。在该技术中,一个转录因子(DBD-VP16)与一个诱饵蛋白结合,另一个转录因子(GAL4)与目标蛋白结合。当诱饵蛋白与目标蛋白相互作用时,两个转录因子将形成一个复合物,该复合物将激活报告基因的表达。通过检测报告基因的表达情况,可以确定蛋白质之间的相互作用。 基因功能研究 酵母双杂交技术已成为研究基因功能的重要工具。通过使用该技术,科学家们可以筛选出与特定基因相互作用的其他基因,从而揭示基因在细胞中的功能。例如,一项研究发现人类肺癌细胞中抑癌基因TP53的相互作用蛋白,从而为肺癌治疗提供新的思路1。

在药物研发方面,酵母双杂交技术也发挥了重要作用。通过该技术,科学家们可以筛选出能够与特定药物靶点相互作用的小分子化合物,从而发现新的药物候选。例如,利用酵母双杂交技术成功发现了一种能够抑制乳腺癌细胞增殖的新药候选2。 酵母双杂交技术在生物技术应用方面也具有广泛的应用价值。例如,利用该技术成功克隆了一个编码具有工业应用价值的酶的基因,并实现了该基因的高效表达3。酵母双杂交技术还被用于构建具有重要应用价值的基因调控网络。 随着基因组学、蛋白质组学和代谢组学等研究的深入发展,酵母双杂交技术的应用前景将更加广阔。在基因组学领域,利用酵母双杂交技术可以揭示基因之间的相互作用和调控关系,有助于深入理解生命活动的复杂性。在蛋白质组学领域,酵母双杂交技术可以应用于蛋白质相互作用的研究,为揭示生物学过程和疾病机制提供有力支持。在代谢组学领域,酵母双杂交技术可以帮助研究代谢物之间的相互作用和调控机制,为代谢调控和代谢性疾病研究提供新的视角。 酵母双杂交技术是一种非常有用的生物技术方法,在基因功能研究、药物研发和生物技术应用等领域均具有广泛的应用价值。随着相关研究的深入发展,酵母双杂交技术的应用前景将更加广阔。未来可以进

酵母双杂交步骤

酵母双杂交步骤 酵母双杂交是一种常用的分子生物学技术,用于研究蛋白质相互作用和信号转导通路。下面将介绍酵母双杂交的步骤。 第一步:构建酵母双杂交载体 酵母双杂交载体是用于表达融合蛋白的质粒。一般来说,酵母双杂交载体包括两个部分:DNA结合域(DBD)和激活域(AD)。DBD 和AD分别与目标蛋白的DNA结合域和激活域融合,从而形成融合蛋白。常用的酵母双杂交载体有pGBKT7和pGADT7。 第二步:构建酵母双杂交菌株 酵母双杂交菌株是用于表达融合蛋白的酵母菌株。一般来说,酵母双杂交菌株包括两个部分:DBD和AD。DBD和AD分别与目标蛋白的DNA结合域和激活域融合,从而形成融合蛋白。常用的酵母双杂交菌株有AH109和Y187。 第三步:酵母双杂交筛选 酵母双杂交筛选是用于筛选蛋白相互作用的方法。一般来说,酵母双杂交筛选包括两个步骤:初筛和确认。初筛是通过生长选择培养基(SD/-Leu/-Trp)筛选出具有融合蛋白的酵母菌株。确认是通过生长选择培养基(SD/-Leu/-Trp/-His/-Ade)筛选出具有蛋白相互作用的酵母菌株。

第四步:酵母双杂交验证 酵母双杂交验证是用于验证蛋白相互作用的方法。一般来说,酵母双杂交验证包括两个步骤:β-galactosidase检测和Western blot检测。β-galactosidase检测是通过检测酵母菌株中β-galactosidase的活性来验证蛋白相互作用。Western blot检测是通过检测融合蛋白的表达来验证蛋白相互作用。 酵母双杂交是一种重要的分子生物学技术,可以用于研究蛋白质相互作用和信号转导通路。通过构建酵母双杂交载体和酵母双杂交菌株,进行酵母双杂交筛选和酵母双杂交验证,可以得到蛋白相互作用的信息。

酵母单双杂交原理

酵母单双杂交原理 酵母单双杂交是一种常用的遗传学实验方法,用于研究酵母细胞中基因的功能和相互作用。该方法基于酵母细胞的性别特性和遗传特性,通过交配产生单倍体和双倍体的酵母细胞,从而实现对基因的分离和分析。 酵母菌是一种单细胞真核生物,其遗传特性与其他真核生物类似,具有两个性别类型:雌性和雄性。雌性细胞称为a型细胞,雄性细胞称为α型细胞。在酵母的生命周期中,单倍体细胞可以通过有丝分裂不断繁殖,也可以通过配子体形成双倍体细胞。 酵母单双杂交的基本原理是将a型和α型的酵母细胞进行交配,形成双倍体细胞。具体步骤如下: 1. 培养酵母细胞:首先,分别培养纯合的a型和α型酵母细胞。培养条件包括适当的培养基和温度,以及适当的培养时间,使酵母细胞处于最佳生长状态。 2. 交配:将纯合的a型和α型酵母细胞混合在一起,通过搅拌或震荡等方式使其充分接触。在一定条件下,a型和α型酵母细胞会发生交配,并形成双倍体细胞。 3. 选择双倍体细胞:将混合后的酵母细胞接种在含有特定抗生素的培养基中。抗生素可以选择性地杀死单倍体细胞,而对双倍体细胞

不起作用。这样就可以通过选择性培养,筛选出双倍体细胞。 4. 分离双倍体细胞:将筛选出的双倍体细胞进行分离,分别培养成单倍体细胞。这可以通过稀释培养、染色体分离或其他方法实现。通过酵母单双杂交实验,可以研究基因的功能和相互作用。通过将感兴趣的基因与报告基因或标签基因相连,可以观察其在双倍体细胞中的表达情况。此外,还可以通过检测特定基因在双倍体细胞中的相互作用,探索基因网络和信号传导途径。 酵母单双杂交方法具有以下优点: 1. 快速:酵母细胞繁殖快速,培养周期短,可以在短时间内获得大量的杂交细胞。 2. 简单:酵母单双杂交实验步骤简单,操作相对容易,不需要昂贵的设备和材料。 3. 灵活性:酵母单双杂交方法可以用于不同的研究目的,包括研究基因的功能、相互作用、信号传导途径等。 4. 可靠性:酵母单双杂交方法已被广泛应用于许多研究领域,具有较高的可靠性和重复性。 总结起来,酵母单双杂交是一种常用的遗传学实验方法,通过交配和选择分离,可以获得双倍体酵母细胞,用于研究基因的功能和相

酵母双杂交技术

酵母双杂交技术本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

酵母双杂交系统 1.原理 酵母双杂交系统的建立得力于对真核细胞调控转录起始过程的认识。研究发现,许多真核生物的转录激活因子都是由两个可以分开的、功能上相互独立的结构域(domain)组成的。例如,酵母的转录激活因子GAL4,在N端有一个由147个氨基酸组成的DNA结合域(DNA binding domain,BD),C端有一个由113个氨基酸组成的转录激活域(transcription activation domain,AD)。GAL4分子的DNA结合域可以和上游激活序列(upstream activating sequence,UAS)结合,而转录激活域则能激活UAS下游的基因进行转录。但是,单独的DNA结合域不能激活基因转录,单独的转录激活域也不能激活UAS 的下游基因,它们之间只有通过某种方式结合在一起才具有完整的转录激活因子的功能。 2.试验流程 酵母双杂交系统正是利用了GAL4的功能特点,通过两个杂交蛋白在酵母细胞中的相互结合及对报告基因的转录激活来捕获新的蛋白质,其大致步骤为: 2.1、视已知蛋白的cDNA序列为诱饵(bait),将其与DNA结合域融合,构建成诱饵质粒。 2.2、将待筛选蛋白的cDNA序列与转录激活域融合,构建成文库质粒。2.3、将这两个质粒共转化于酵母细胞中。 2.4、酵母细胞中,已分离的DNA结合域和转录激活域不会相互作用,但诱饵蛋白若能与待筛选的未知蛋白特异性地相互作用,则可激活报告基因的转录;反之,则不能。利用4种报告基因的表达,便可捕捉到新的蛋白质。 3.特点 优点 蛋白--蛋白相互作用是细胞进行一切代谢活动的基础。酵母双杂交系统的建立为研究这一问题提供了有利的手段和方法。 缺点 尽管该系统己被证实为一种非常有效的方法,但它也有自身的缺点和问题。1

酵母双杂交操作步骤

(酵母菌储存在-70 C 中,引物和质粒 DNA 储存在-20 C 中) 概念: 1. 次序转化:指的是先将一种质粒转化进酵母中(常是 DNA-BD/bait plasmid ),在选择培 养基中选择出阳性克隆,之后再将另外一个质粒( AD fusion library )转化进去。优点: 就是比共转化使用更少的质粒 DNA 也就是节约质粒 DNA 2. 共同转化:将两种质粒一起转化进酵母中。优点:比次序转化更容易操作。 pGBKT7----的选择物是:kanamycin (卡那霉素) pGADT7----的选择物是:ampicillin ( 氨苄西林) 酵母氮源(YNB :; -leu DO suppleme nt 0.69g ; (购买来就配好的) 葡萄糖20g ( 即2%) 5) SD/-trp (1000 ml ) 酵母氮源(YNB :; -ade/-leu/-trp/-his DO suppleme nt 0.74g ; (购买来就配好的) 葡萄糖20g (即2%) 注意:YNB 有两种,一种含有硫酸胺,另外一种不含硫酸胺。我们这用的是 含硫酸铵的。(买 来就加进去了的)。如果不含硫酸铵,那么要在终浓度 %的 YNB 中再加入%的硫酸铵,即最终 在1000 ml 溶液中加入总量为的 YNB 与硫酸铵。 各种SD 培养基: 1) SD/-ade (腺嘌呤)/-leu (亮氨酸)/-trp 缺”) 酵母氮源(YNB :; -ade/-leu/-trp/-his DO suppleme nt 0.60g 葡萄糖20g (即2%) 2) SD/-leu/-trp/-his (1000 ml ) 酵母氮源(YNB :; -leu/-trp/-his DO suppleme nt 0.62g ; 葡萄糖20g.( 即2%) 3) SD/-leu/-trp (1000 ml ) (“二 缺”) 酵母氮源(YNB :; -ade/-leu/-trp/-his DO suppleme nt 0.64g 葡萄糖20g ( 即2%) (色氨酸)/-his (组氨酸)(1000 ml )("四 (购买来就配好的); (购买来就配好的) (购买来就配好的)

酵母双杂交原理

酵母双杂交系统原理 酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。典型的真核生长转录因子,如GAL4、G4、等都含有二个不同的构造域: DNA 结合构造域(DNA-binding domain)和转录激活构造域(transcription-activating domain)。前者可识别DNA上的特异序列,并使转录激活构造域定位于所调节的基因的上游,转录激活构造域可同转录复合体的其他成分作用,启动它所调节的基因的转录。二个构造域不但可在其连接区适当部位翻开,仍具有各自的功能。而且不同两构造域可重建发挥转录激活作用。酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。上述二类载体在构建融合基因时,测试蛋白基因与构造域基因必须在阅读框内融合。融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。 双杂交系统的另一个重要的元件是报道株。报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。〈2〉具有可直接进展选择的标记基因和特征性报道基因。〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合构造域(如GAL4-bd,Le*A-bd);另一个基因融合到转录激活构造域(如GAL4-ad,VP16)。激活构造域融合基因转入表达结合构造域融合基因的酵母细胞系中,蛋白间的作用使得转录因子重建导致相邻的报道基因表达(如lacZ),从而可分析蛋白间的结合作用。 酵母双杂交系统能在体内测定蛋白质的结合作用,具有高度敏感性。主要是由于:①采用高拷贝和强启动子的表达载体使杂合蛋白过量表达。②信号测定是在自然平衡浓度条件下进展,而如免疫共沉淀等物理方法为到达此条件需进展屡次洗涤,降低了信号强度。③杂交蛋白间稳定度可被激活构造域和结合构造域结合形成转录起始复合物而增强,后者又与启动子DNA结合,此三元复合体使其中各组分的结合趋于稳定。④通过mRNA产生多种稳定的酶使信号放大。同时,酵母表型,*-Gal及HIS3蛋白表达等检测方法均很敏感。 酵母双杂交筛选原理 双杂交系统的建立得力于对真核生物调控转录起始过程的认识。细胞起始基因转录需要有反式转录激活因子的参与。80年代的工作说明, 转录激活因子在构造上是组件式的(modular), 即这些因子往往由两个或两个以上相互独立的构造域构成, 其中有DNA结合构造域(DNA binding domain, 简称为DB,.BD)和转录激活构造域(activation domain, 简称为AD), 它们是转录激活因子发挥功能所必需的。单独的DB虽然能和启动子结合, 但是不能激活转录。而不同转录激活因子的DB和AD形成的杂合蛋白仍然具有正常的激活转录的功能。如酵母细胞的Gal4蛋白的DB与大肠杆菌的一个酸性激活构造域B42融合得到的杂合蛋白仍然可结合到Gal4结合位点并激活转录。 Fields等人的工作标志双杂交系统的正式建立。他们以与调控SUC2基因有关的两个蛋白质Snf1和Snf2为模型, 将前者与Gal4的DB构造域融合, 另外一个与Gal4的AD构造域的酸性区域融合。由DB和AD形成的融合蛋白现在一般分别称之为“诱饵〞(bait)和“猎物〞或靶蛋白(prey or target protein)。如果在Snf1和Snf2之间存在相互作用, 则分别位于这两个融合蛋白上的DB和AD就能重新形成有活性的转录激活因子, 从而激活相应基因的转录与表达。这个被激活的、能显示“诱饵〞和“猎物〞相互作用的基因称之为报道基因(reporter

相关文档