文档库 最新最全的文档下载
当前位置:文档库 › 大学课件:半导体物理名词解释

大学课件:半导体物理名词解释

大学课件:半导体物理名词解释

半导体物理名词解释

金刚石型结构:金刚石结构是一种由相同原子构成的复式晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。每个原子周围都有4个最近邻的原子,组成一个正四面体结构。

闪锌矿型结构:闪锌矿型结构的晶胞,它是由两类原子各自组成的面心立方晶格,沿空间对角线彼此位移四分之一空间对角线长度套构而成。

有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。有效质量表达式为:

费米能级:

费米能级是T=0

K时电子系统中电子占据态和

未占据态的分界线,是T=0

K时系统中电子所能具有的最高能量。

准费米能级:统一的费米能级是热平衡状态的标志。当外界的影响破坏了热平衡,使半导体处于非平衡状态时,就不再存在统一的费米能级。但是可以认为,分别就导带和价带中的电子讲,他们各自基本上处于平衡状态,导带与价带之间处于不平衡状态。因为费米能级和统计分布函数对导带和价带各自仍是适用的,可以引入导带费米能级和价带费米能级,它们都是局部的费米能级。称为“准费米能级”

费米面:将自由电子的能量E等于费米能级Ef的等能面称为费米面。

费米分布:大量电子在不同能量量子态上的统计分布。费米分布函数为:

施主能级:通过施主掺杂在半导体的禁带中形成缺陷能级,被子施主杂质束缚的电子能量状态称为施主能级。

受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级,被受

主杂质束缚的空穴的能量状态称为受主能级。

禁带:能带结构中能态密度为零的能量区间。

价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。

导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。

N型半导体:

在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。

P型半导体

:

在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。

简并半导体:

对于重掺杂半导体,费米能级接近或进入导带或价带,导带/价带中的载流子浓度很高,泡利不相容原理起作用,电子和空穴分布不再满足玻耳兹曼分布,需要采用费米分布函数描述。称此类半导体为简并半导体。

非简并半导体:

掺杂浓度较低,其费米能级EF在禁带中的半导体

;

半导体中载流子分布可由经典的玻尔兹曼分布代替费米分布描述时,称之为非简并半导体

施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。

受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。

替位式杂质:杂质原子取代晶格原子而位于晶格点处。

间隙式杂质:杂质原子位于晶格原子的间隙位置。

等电子杂质:当杂质的价电子数等于其所替代的主晶格原子的价

电子数时,这种杂质称为等电子杂质

空穴:

定义

价带中空着的状态看成是带正电荷的粒子,称为空穴

意义

a

把价带中大量电子对电流的贡献仅用少量的空穴表达出来

b金属中仅有电子一种载流子,而半导体中有电子和空穴两种载流子,正是这两种载流子的相互作用,使得半导体表现出许多奇异的特性,可用来制造形形色色的器件

理想半导体(理想与非理想的区别):a

原子并不是静止在具有严格周期性的晶格的格点位置上,而是在其平衡位置附近振动

b

半导体材料并不是纯净的,而是含有各种杂质

即在晶格格点位置上存在着与组成半导体材料的元素不同其他化学元素的原子c

实际的半导体晶格结构并不是完整无缺的,而存在着各种形式的缺陷

杂质补偿:在半导体中,施主和受主杂质之间有相互抵消的作用通常称为杂质的补偿作用

深能级杂质:非Ⅲ、Ⅴ族杂质在硅、锗的禁带中产生的施主能级距离导带较远,他们产生的受主能级距离价带也较远,通常称这种能级为深能级,相应的杂质为深能级杂质

浅能级杂质:在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。

迁移率:单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和

参数之一。迁移率的表达式为:μ=qτ/m*

。可见,有效质量和弛豫时间(散射)是影响迁移率的因素。

空穴的牵引长度:表征空穴漂移运动的有效范围的参量就是空穴的牵引长度

点缺陷:是最简单的晶体缺陷,它是在结点上

邻近的微观区域内

偏离晶体结构的正常排列的一种缺陷。包括:间隙原子和空位是成对出现的弗仓克耳缺陷

和只在晶体内形成空位而无间隙原子的肖特基缺陷。

弗仑克耳缺陷:间隙原子和空穴成对出现导致的缺陷。

肖特基缺陷:只在晶体内形成空位而无间隙原子时的缺陷。

空穴:在电子挣脱价键的束缚成为自由电子,其价键中所留下来的空位。

空位:在一定条件下,晶格原子不仅在其平衡位置附近振动,而且有一部分原子会获得足够的能量,脱离周围原子对他的束缚,挤入晶格原子间隙间成为间隙原子,原来的位置便成为空位

本征载流子:就是本征半导体中的载流子(电子和空穴),即不是由掺杂所产生出来的。

非平衡载流子:

半导体处于非平衡态时,比平衡态时多出来的那一部分载流子称为非平衡载流子。Δp=Δn

热载流子:热载流子:在强电场情况下,载流子从电场中获得的能量很多,载流子的平均能量比热平衡状态时的大,因而载流子与晶格系统不再处于热平衡状态。温度是平均动能的量度,既然载流子的能量大于晶格系统的能量,人们便引入载流子的有效温度Te来描写这种与晶格系统不处于热平衡状态时的载流子,并称这种状态载流子为热载流子

束缚激子:等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,

称为束缚激子。

漂移运动:在外加电压时,导体或半导体内的载流子受电场力的作用,做定向运动。

扩散运动

:当半导体内部的载流子存在浓度梯度时,引起载流子由浓度高的地方向浓度低的地方扩散,扩散运动是载流子的有规则运动。电子扩散电流

状态密度:就是在能带中能量E附近每单位能量间隔内的量子态数。

直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合间接复合:导带中的电子通过禁带的复合中心能级与价带中的空穴复合,这样的复合过程称为间接复合。

俄歇复合:载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这是一种非辐射复合。

陷阱中心:半导体中的杂质和缺陷在禁带中形成一定的能级,这些能级具有收容部分非平衡载流子的作用,杂质能级的这种积累非平衡载流子的作用称为陷阱效应。把产生显著陷阱效应的杂质和缺陷称为陷阱中心。

复合中心:半导体中的杂质和缺陷可以在禁带中形成一定的能级,对非平衡载流子的寿命有很大影响。杂质和缺陷越多,寿命越短,杂质和缺陷有促进复合的作用,把促进复合的杂质和缺陷称为复合中心。

等电子复合中心:等电子复合中心:在Ⅲ-Ⅴ族化合物半导体中掺入一定量的与主原子等价的某种杂质原子,取代格点上的原子。由于杂质原子和主原子之间电负性的差别,中性杂质原子可以束缚电子或空穴而成为带电中心,带电中心会吸引和被束缚载流子符号相反的载流子,形成一个激子束缚态。

爱因斯坦关系:对电子Dn/μn

=k0T/q

对空穴Dp/μp

=k0T/q它表明非简并情况下载流子的迁移率和扩散系数之间的关系。

陷阱效应:杂质能级积累非平衡载流子的作用就称为陷阱效应。

回旋共振:一些物质如半导体中的载流子在一定的恒定磁场和高频磁场同时作用下会发生抗磁共振。

砷化镓负阻效应:当电场达到一定値时,能谷1中的电子可从电场中获得足够的能量而开始转移到能谷2,发生能谷间的散射,电子的动量有较大的改变,伴随吸收或发射一个声子。但是,这两个能谷不是完全相同的,进入能谷2的电子,有效质量大为增加,迁移率大大降低,平均漂移速度减小,电导率下降,产生负阻效应

耿氏效应:在半导体本体内产生高频电流的现象称为耿氏效应

扩散长度:扩散长度是表征载流子扩散有效范围的一个物理量,它等于扩散系数乘以寿命的平方根。

势垒电容:在外加正向偏压增加时,将有一部分电子和空穴“存入”势垒区,反之,当正向偏压减小时,势垒区的电场增强,势垒区宽度增加,空间电荷数量增多,这就是有一部分电子和空穴从势垒区“取出”。对于加反向偏压的情况类似。总之,pn结上外加电压的变化,引起了电子和空穴在势垒区的“存入”和“取出”作用,导致势垒区的空间电荷数量随外加电压而变化,这和一个电容器的充放电作用相似,这种pn结的电容效应称为势垒电容

扩散电容:正向偏压时,有空穴从p区注入n区,于是在势垒区与n区边界n区一侧一个扩散长度内,便形成了非平衡空穴和电子的积累,同样在p区也有非平衡电子和空穴的积累。当正向偏压增加时,由p区注入到n区的空穴增加,注入的空穴一部分扩散走了。所以外加电压变化时,n区扩散区内积累的非平衡空穴也增加,与它保持电中性的电子也相应增加。同样,p区扩散区内积累的非平衡电子和与它保持电中性的空穴也要增加。这种由于扩散区的电荷数量随外加电压的变化所产生的电容效应,称为pn结的扩散电容

pn结隧道效应:在简并化的重掺杂半导体中,n型半导体的费米能级进入了导带,p型半导体的费米能级进入了价带。在重掺杂情况下,杂质浓度大,势垒区很薄,由于量子力学的隧道效应,n区导带的电子可能穿过禁带到p区价带,p区价带电子也可能穿过禁带到n区导带,从而有可能产生隧道电流。

耗尽层近似:当势垒高度远大于koT时,势垒区可近似为一个耗尽层。在耗尽层中,载流子极为稀少,他们对空间电荷的贡献可以忽略;杂质全部电离,空间电荷完全由电离杂质的电荷形成。

肖特基势垒二极管:利用金属-半导体整流接触效应特性制成的二极管称为肖特基势垒二极管,它和pn结二极管具有类似的电流-电压关系,即它们都有单向导电性,但前者又又区别于后者的以下显著特点

a

就载流子的运动形式而言,pn结正向导通时,由p区注入n区的空穴或由n区注入p区的电子,都是少数载流子,他们先形成一定的积累,然后靠扩散运动形成电流。这种注入的非平衡载流子的积累称为电荷贮存效应,它严重地影响了pn结的高频性能。而肖特基势垒二极管的正向电流,主要是由半导体的多数载流子进入金属形成的。它是多数载流子器件。因此,肖特基势垒二极管比pn结二极管有更好的高频特性

b

对于相同的高度,肖特基势垒二极管的Jsd或Jst要比pn结的反向饱和电流Js大得多。

欧姆接触:金属与半导体接触时还可以形成非整流接触,即欧姆接触,它不产生明显的附加阻抗,而且不会使半导体内部的平衡载流子浓度发生显著的改变(半导体重掺杂时,它与金属的接触可以形成接近理想的欧姆接触

理想MIS结构:a

金属与半导体间功函数差为零

b

在绝缘层中没有任何电荷且绝缘层完全不导电

c

绝缘层与半导体界面处不存在任何界面态

深耗尽状态:在金属和半导体之间加一脉冲阶跃或高频正弦波形成的正电压时,由于空间电荷层内的少数载流子的产生速率跟不上电压的变化,反型层来不及建立,只有靠耗尽层延伸向半导体深处而产生大量受主负电荷以满足电中性条件。因此,这种情况时,耗尽层的宽度很大,可远大于强反型的最大耗尽层宽度,且其宽度随电压幅度的增大而增大,这种状态称为深耗尽状态

Si-SiO2系统各种电荷:a

二氧化硅层中的可动离子。主要是带正电的钠离子,还有钾、氢等正离子

b

二氧化硅层中的固定电荷

c

二氧化硅层中的电离陷阱电荷。是由于各种辐射如X射线、γ射线、电子射线等引起

异质结:有两种不同的半导体单晶材料可超过组成的结,则称为异质结

异质结的特点:a

能带发生了弯曲,出现“尖峰”和“凹口”

b

能带在交界面处不连续,有一个突变

异质pn结的超注入现象:指在异质pn结中有宽禁带半导体注入到窄禁带半导体中的少数载流子浓度宽带半导体中多数载流子浓度间接带隙半导体:导带极小值和价带极大值没有对应于相同的波矢,例如像锗、硅一类半导体,价带顶位于K空间原点,而导带低则不在k空间原点,这种半导体称为间接带隙半导体

非竖直(直接)跃迁:在非竖直(直接)跃迁中,电子不仅吸收光子,同时还和晶格交换一定的振动能量,即吸收或放出一个声子

光电探测器件工作原理及用途:有光照引起半导体电导率增加的现象称为光电导。大量实验证明,半导体光电导的强弱与照射波长有密切的关系,所谓光电导的光谱分析,就是指对应于不同的波长,光电导响应灵敏度的变化关系。因此,可以通过测量光电导的光谱分布来确定半导体材料光电导特性,根据这一原理可制成光电探测器。用途:PbS、PbSe和PbTe是重要的红外探测器材料,CdS除了对可见光有响应外,还可有效地用于短波方面,知道x光短波

半导体太阳电池的基本原理:当用适当波长的光照射非均匀半导体(pn结等)时,由于内建电场的作用(不加外电场),半导体内部产生电动势(光生电压),如将pn结短路,则出现电流。这种由内建电场引起的光电效应,称为光生伏特效应。根据这一原理可制成太阳能电池,将太阳辐射能直接转变为电能

光电池(光电二极管)的基本原理:当用适当波长的光照射pn结时,由于pn结势垒区内存在较强的内建电场,结两边的光生少数载流子受该场的作用,各自向相反的方向运动,pn结两端产生光生电动势,如将pn结与外电路接通,只要光照不停止,就会有渊源不断的电流过电路,pn结起到了电源的作用

半导体发光器件的基本原理:半导体的电子可以吸收一定能量的光子而被激发。同样,处于激发态的电子也可以向较低的能级跃迁,以光辐射的形式释放出能量,也就是电子从高能级向低能级跃迁,伴随着发射光子,这就是半导体的发光现象。(产生光子发射的主要条件是系统必须处于非平衡状态,即在半导体内需要有某种激发过程存在,通过与非平衡载流子的复合,才能形成发光

半导体激光器件的基本原理:

处在激发态E2的原子数大于处在激发态E1的原子数,则在光子流hν12照射下,受激辐射将超过吸收过程。这样由系统发射的能量为hν12将大于进入系统的同样能量的光子数,这钟现象称为光量子放大。通常把处于激发态E2(高能级)的原子数大于处在激发态E1(低能级)的原子数的这种反常情况,称为“分布反转”或“粒子数反转”。激光的发射,必须满足

a

形成分布反转,使受激辐射占优势

b

具有共振腔,以实现光量子放大

c

至少达到阈值电流密度,使增益至少等于损耗

半导体霍尔器件的基本原理:把通有电流的半导体放在均匀磁场中,设电场沿X方向,磁场方向和电场垂直,沿z方向,则在垂直于电场和磁场的+y或-y方向将产生一个横向电场,这个现象称为霍尔效应。利用霍尔效应制成的电子器件称为霍尔器件

二维电子气:MOS反型层中的电子被局限在很窄的势阱中运动,所以反型层中的电子沿垂直于界面的z方向的运动是量子化的,形成一系列分立能级E0,E1,…,Ej…。在xy平面内,即沿着界面方向能量仍是准连续的。称这样的电子系统为二维电子气

半导体压阻器件的基本原理:对半导体施加应力时,半导体的电阻率要发生改变,这种现象称为压阻效应。应用:半导体应变计、压敏二极管、压敏晶体管等

a

利用半导体电阻随应力变化的这一现象可以制成半导体应变计

bpn结伏安特性随压力变化很大,利用他的这一压敏特性可以制成压敏二极管和压敏三极管

非晶态半导体:原子排列不具有周期性,即不具有长程有序的半导体称为非晶态半导体

半导体热电效应应用:温差发电器

制冷器原理P373

判断半导体的导电类型

a

热探针法

当温度增加时,载流子浓度和速度都增加,它们由热端扩散到冷端,如果载流子是空穴,则热端缺少空穴,冷端有过剩空穴,冷端电

势较高,形成由冷端指向热端的电场;如果载流子是电子,则热端缺少电子,冷端有过剩电子,热端电势较高,形成由热端指向冷端的电场。所以,由半导体的温差电动势的正负,可以判断半导体的导电类型

B霍尔效应法

n型和p型半导体的霍尔系数符号相反,也即霍尔电压Vh的正负相反,所以,从霍尔电压Vh的正负可以判断半导体的导电类型

半导体物理名词解释总结(不完全正确,仅供参考)

●有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。其 物理意义:1.有效质量的大小仍然是惯性大小的量度;2.有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。 ●能带:晶体中,电子的能量是不连续的,在某些能量区间能级分布是准连续的,在某些 区间没有能及分布。这些区间在能级图中表现为带状,称之为能带。 ●空穴:假想的粒子,与价带顶部的空状态相关的带正电“粒子”。 ●空穴:在电子挣脱价键的束缚成为自由电子,其价键中所留下来的空位。 ●空穴:定义价带中空着的状态看成是带正电荷的粒子,称为空穴。 ●替位式杂质:杂质原子取代晶格原子而位于晶格点处。 ●间隙式杂质:杂质原子位于晶格原子的间隙位置。 ●点缺陷:是最简单的晶体缺陷,它是在结点上或邻近的微观区域内偏离晶体结构正常排 列的一种缺陷。包括:间隙原子和空位是成对出现的弗仓克耳缺陷和只在晶体内形成空位而无间隙原子的肖特基缺陷。 ●施主能级:通过施主掺杂在半导体的禁带中形成缺陷能级,被子施主杂质束缚的电子能 量状态称为施主能级。 ●施主能级:离化能很小,在常温下就能电离而向导带提供电子,自身成为带正电的电离 施主,通常称这些杂质能级为施主能级。 ●受主杂质:能够接受电子而产生导电空穴,并形成负电中心的杂质。 ●受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以 称它们为受主杂质或p型杂质。 ●受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级。正常情况下,此能级为空穴 所占据,这个被受主杂质束缚的空穴的能量状态称为受主能级。 ●n型半导体:以电子为主要载流子的半导体。 ●p型半导体:以空穴为主要载流子的半导体。 ●多数载流子:指的是半导体中的电子流。n型半导体中的电子和p型半导体中的空穴称 之为多数载流子。 ●少数载流子:指的是半导体中的电子流。n型半导体中的空穴和p型半导体中的电子称 之为少数载流子。 ●(半导体材料中有电子和空穴两种载流子。在 N 型半导体中,电子是多数载流子, 空穴 是少数载流子。在P型半导体中,空穴是多数载流子,电子是少数载流子。)

大学课件:半导体物理名词解释

大学课件:半导体物理名词解释 半导体物理名词解释 金刚石型结构:金刚石结构是一种由相同原子构成的复式晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。每个原子周围都有4个最近邻的原子,组成一个正四面体结构。 闪锌矿型结构:闪锌矿型结构的晶胞,它是由两类原子各自组成的面心立方晶格,沿空间对角线彼此位移四分之一空间对角线长度套构而成。 有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。有效质量表达式为: 费米能级: 费米能级是T=0 K时电子系统中电子占据态和 未占据态的分界线,是T=0 K时系统中电子所能具有的最高能量。 准费米能级:统一的费米能级是热平衡状态的标志。当外界的影响破坏了热平衡,使半导体处于非平衡状态时,就不再存在统一的费米能级。但是可以认为,分别就导带和价带中的电子讲,他们各自基本上处于平衡状态,导带与价带之间处于不平衡状态。因为费米能级和统计分布函数对导带和价带各自仍是适用的,可以引入导带费米能级和价带费米能级,它们都是局部的费米能级。称为“准费米能级” 费米面:将自由电子的能量E等于费米能级Ef的等能面称为费米面。 费米分布:大量电子在不同能量量子态上的统计分布。费米分布函数为: 施主能级:通过施主掺杂在半导体的禁带中形成缺陷能级,被子施主杂质束缚的电子能量状态称为施主能级。 受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级,被受

主杂质束缚的空穴的能量状态称为受主能级。 禁带:能带结构中能态密度为零的能量区间。 价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。 导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。 N型半导体: 在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。 P型半导体 : 在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。 简并半导体: 对于重掺杂半导体,费米能级接近或进入导带或价带,导带/价带中的载流子浓度很高,泡利不相容原理起作用,电子和空穴分布不再满足玻耳兹曼分布,需要采用费米分布函数描述。称此类半导体为简并半导体。 非简并半导体: 掺杂浓度较低,其费米能级EF在禁带中的半导体 ; 半导体中载流子分布可由经典的玻尔兹曼分布代替费米分布描述时,称之为非简并半导体 施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。 受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。 替位式杂质:杂质原子取代晶格原子而位于晶格点处。 间隙式杂质:杂质原子位于晶格原子的间隙位置。 等电子杂质:当杂质的价电子数等于其所替代的主晶格原子的价

半导体物理简单名词解释

《半导体物理》基本名词解释 极性半导体:含有离子键成分 本征半导体:不含杂质的半导体 本征激发:电子从价带跃迁到导带 禁带宽度:脱离共价键所需要的最低能量 缺陷分类:点缺陷(空位、间隙原子)线缺陷(位错)面缺陷(层错、晶粒间界) 弗兰克尔缺陷:空位与间隙成对出现 肖特基缺陷:只有空位 杂质原子分类:替位式、间隙式 施主杂质:释放电子而产生导电电子并形成正电中心 受主杂质:接受电子而产生导电空穴并形成负电中心 施主能级:被施主杂质束缚的电子的能量状态 受主能级:被受主杂质束缚的空穴的能量状态 施主杂质电离能:被俘获的电子摆脱束缚成为自由电子所需要的能量 受主杂质电离能:被俘获的空穴摆脱束缚从而参与导电所需要的能量 N型半导体:主要依靠导带电子导电的半导体 P 型半导体:主要依靠价带空穴导电的半导体 浅能级杂质:在半导体禁带中产生能级距带边较近的杂质,对载流子浓度和导电类型影响大深能级杂质:施主能级距离导带底远,受主能级距离价带顶远,对载流子复合作用大 补偿作用:施主杂志和受主杂质同时存在有相互抵消的作用 双性行为:杂质既能表现为施主杂质又能表现为受主杂质(Si在GaAs中) 等电子陷阱:等电子杂质因电负性的差将俘获某种载流子而成为带点中心

能态密度(状态密度):单位能量间隔内的状态数目 费米分布函数:能量为E的一个量子态被一个电子占据的概率 费米能级(化学势):标志了电子的填充水平 简并系统:服从费米统计率的电子系统 非简并系统:服从玻尔兹曼统计率的电子系统,重掺杂半导体 简并化条件:0-2k0T 多数载流子:n型半导体的电子,p型半导体的空穴 少数载流子:n型半导体的空穴,p型半导体的电子 漂移运动:载流子在外加电场作用下所作的定向运动 散射几率:一个电子在单位时间内受到的散射次数 平均自由时间:一个电子在连续两次散射之间自由运动的时间 平均自由程:一个电子在连续两次散射之间自由运动的路程 载流子的主要散射机制:电离杂质散射、晶格振动散射、其他因素(等同能谷间散射、中性 杂质、位错) 非平衡载流子复合率:单位时间、单位体积内净复合消失的电子-空穴对数 准费米能级:非平衡态时,分别就价带和导带中的电子而言,各自处于平衡状态,用来描述对应状态的费米能级。 陷阱效应:杂质能级积累非平衡载流子的作用 等电子陷阱(杂质):等电子杂质因电负性的差将俘获某种载流子而成为带点中心 直接复合:电子在导带和价带之间的直接跃迁,引起电子与空穴的直接复合 间接复合:电子和空穴通过禁带的复合中心进行复合 自建电场:掺杂不均匀引起浓度梯度,造成扩散电流形成自建电场

半导体物理名词解释

本征激发的概念:价带上的电子激发成为准自由电子,即价带电子激发成为导 带电子的过程,称为本征激发。 格波态密度:确定体积V的晶体,在ω附近单位频率间隔内的格波总数 状态密度:状态密度就是在能带中能量E附近每单位能量间隔内的量子态数 平均自由时间:载流子在电场中作漂移运动时,只有在连续两次散射之间的时 间内才作加速运动,这段时间称为自由时间。自由时间长短不一,若取极多次 而求得其平均值则称为载流子的平均自由时间。 载流子的散射:没有外场的作用,载流子作无规则的热运动。载流子在半导体 中运动时,不断地与热振动的晶格原子或电离的杂质离子发生碰撞,碰撞后载 流子的运动速度的大小和方向发生了改变。用波的概念,就是说电子波在半导 体中传播时遭到了散射。半导体中载流子的散射机制:晶格振动散射和电离杂质散射 “准费米能级”概念:存在非平衡载流子时,导带和价带各自适用费米能级和 统计分布函数,分别引入导带费米能级和价带费米能级,它们都是局部的费米 能级,称为“准费米能级” 直接复合:由电子在导带和价带间直接跃迁而引起非平衡载流子的复合过程。 间接复合:非平衡载流子通过复合中心的复合。

非平衡载流子深入样品的平均距离,称为扩散长度。 空穴:空穴是几乎被电子填满的能带中未被电子占据的少数空的量子态, 这少量的空穴总是处于能带顶附近,是价电子脱离原子束缚后形成的电子空位,对应于价带顶的电子空位。 由两种不同的半导体材料形成的结,称为异质结 直接带隙半导体材料:就是导带最小值(导带底)和价带最大值在k空间中同一位置 间接带隙半导体材料:(如Si、Ge)导带最小值(导带底)和满带最大值在k空间中不同位置 非平衡载流子的平均生存时间称为非平衡载流子的寿命,用表示。寿命标志 着非平衡载流子的浓度减小到原值的1/e所经历的时间。 载流子有效质量的物理意义:直接把外力f和电子的加速度联系起来,而内部 势场的作用则由有效质量加以概括,使得在解决半导体中电子在外力作用下的 运动规律时,可以不涉及半导体内部势场的作用。

名词解释(半导体物理)

直接带隙半导体:导带边和价带边处于k空间相同点的半导体通常被称为直接带隙半导体。电子要跃迁的导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。例子有GaAs,InP,InSb。 间接带隙半导体:导带边和价带边处于k空间不同点的半导体通常被称为间接带隙半导体。 形成半满能带不只需要吸收能量,还要该变动量。例子有Ge,Si。 准费米能级:非平衡态的电子与空穴各自处于热平衡态--准平衡态,可以定义EFn、EFp分别为电子和空穴的准费米能级。 有效质量:在讨论半导体的载流子在外场力的作用下的运动规律时,由于载流子既受到外场的作用,又受到晶体内部周期性势场的作用,只要将内部势场的复杂作用包含在引入的有效质量中,并用它来代替惯性质量,就可以方便地采用经典力学定律来描写。由于晶体的各向异性,有效质量和惯性质量不一样,它是各向异性的。有效质量是半导体内部势场的概括。 纵向有效质量和横向有效质量:由于半导体材料的k空间等能面是椭球面,有效质量是各向异性的。在回旋共振实验中,当磁感应强度相对晶轴有不同取向时,可以得到为数不等的吸收峰,在分析时引入纵向有效高质量和横向有效质量表示旋转椭球等能面在长轴方向和短轴方向上的有效质量的差别。是晶体各向异性的反映。 扩散长度: 指的是非平衡载流子在复合前所能扩散深入样品的平均距离,它由扩散系数和材料的非平衡载流子的寿命决定,即L=√Dt。 牵引长度:是指非平衡载流子在电场E作用下,在寿命t时间内所漂移的的距离, 即L(E)=Eut,有电场,迁移率和寿命决定。 费米能级:表示系统处于热平衡状态时,在不对外做功的情况下,增加一个电子所引起系统能量的变化。它标志了电子填充能级水平,与温度,材料的导电类型以及掺杂浓度等因素有关。 电子亲和势:表示要使得半导体导带底的电子逃逸出体外(相对于真空能级)所需的最小能量,对半导体材料而言,它与导电类型,掺杂浓度无关。 复合中心:半导体中的杂质和缺陷可以在禁带中形成一定的能级,对非平衡载流子的寿命有很大的影响。实验发现:杂质,缺陷越

半导体物理学名词解释 2

半导体物理学名词解释 1、直接复合:电子在导带与价带间直接跃迁而引起非平衡载流子的复合。 2、间接复合:指的是非平衡载流子通过复合中心的复合。 3、俄歇复合:载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这是一种非辐射复合。 4、施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。 5、受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。 6、多数载流子:半导体材料中有电子和空穴两种载流子。在N 型半导体中,电子是多数载流子, 空穴是少数载流子。在P型半导体中,空穴是多数载流子,电子是少数载流子。 7、能谷间散射: 8、本征半导体:本征半导体就是没有杂质和缺陷的半导体。 9、准费米能级:半导体中的非平衡载流子,可以认为它们都处于准平衡状态(即导带所有的电子和价带所有的空穴分别处于准平衡状态)。对于处于准平衡状态的非平衡载流子,可以近似地引入与Fermi能级相类似的物理量——准Fermi能级来分析其统计分布;当然,采用准Fermi能级这个概念,是一种近似,但确是一种较好的近似。基于这种近似,对于导带中的非平衡电子,即可引入电子的准Fermi能级;对于价带中的非平衡空穴,即可引入空穴的准Fermi能级。 10、禁带:能带结构中能态密度为零的能量区间。 11、价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。 12、导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。 13、束缚激子:等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,称为束缚激子。 14、浅能级杂质:在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。 15、深能级杂质:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。 16、迁移率:μ,表示单位场强下电子的平均漂移速度,单位是m^2/(V·s)或者cm^2/(V·s)。 17、空穴的牵引长度:表征空穴漂移运动的有效范围的参量就是空穴的牵引长度。 18、陷阱效应:杂质能级积累非平衡载流子的作用就叫做陷阱效应。 19、替位式杂质:杂质原子取代晶格原子而位于晶格点处。 20、间隙式杂质:杂质原子位于晶格原子的间隙位置。 21、弗仑克耳缺陷:间隙原子和空穴成对出现导致的缺陷。 22、肖特基缺陷:只在晶体内形成空位而无间隙原子时的缺陷。 23、高阻区: 24、等电子杂质:当杂质的价电子数等于其所替代的主晶格原子的价电子数时,这种杂质称为等电子杂质。 25、负微分电导: 26、扩散长度:扩散长度是表征载流子扩散有效范围的一个物理量,它等于扩散系数乘以寿命的平方根。 27、杂质补偿作用:半导体中存在施主杂质和受主杂质时,它们的共同作用会使载流子

半导体物理名词解释

1、离子晶体:正负离子交替排列在晶格格点上,靠离子键结合成的晶体。 共价晶体:由共价键结合形成的晶体。 2、布拉菲点阵:实际晶体可以看作基元在空间的周期性重复排列。把基元看作 是一个几何点,按晶体相同的周期在空间进行排列得到的点阵称为这种晶体的布拉菲点阵。 3、原胞:构成布拉菲点阵的最小平行六面体,格点只能在顶点。 晶胞:布拉菲点阵中能反映其对称性前提下的体积最小的重复单元。 4、施主杂质:能够释放电子而产生导电电子并形成正电中心的杂质。 受主杂质:能够接受电子而产生导电空穴,并形成负电中心的杂质。 施主电离能:多余的一个价电子脱离施主杂质而成为自由电子所需要的能量。 受主电离能:使空穴挣脱受主杂质束缚成为导电空穴所需要的能量。 5、量子态密度:单位K空间中的量子态数目称为量子态密度。 状态密度:单位能量间隔内的量子态数目称为状态密度。 有效状态密度:所有有可能被电子占据的量子态数。 6、深杂质能级:能在半导体中形成深能级的杂质元素。将其引入半导体中,形成一个或多个能级。该能级距离导带底、价带顶较远,且多位于禁带的中央区域。 浅杂质能级:能在半导体中形成浅能级的杂质元素。在半导体禁带中靠近导带边缘的杂质。 7、空穴:在电子挣脱价键的束缚成为自由电子,其价键中所留下来的空位。 8、有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。有效质量表达式为: 9、理想半导体:晶格原子严格按周期性排列并静止在格点位置上,纯净不含杂质的,晶格结构是完整的。 实际半导体:原子不是静止的,而是在其平衡位置附近振动,含有若干杂质,存在点缺陷,线缺陷和面缺陷等。 10、直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合。 间接复合:导带中的电子通过禁带的复合中心能级与价带中的空穴复合,这样的复合过程称为间接复合。 11、复合率:单位时间单位体积内复合掉的电子-空穴对数。 非平衡载流子的复合率(净复合率): 产生率:单位时间单位体积内所产生的电子-空穴对数。 非平衡载流子的产生率(净产生率): 12、陷阱:有显著陷阱效应(积累非平衡载流子的作用)的杂质能级称为陷阱。 陷阱中心:相应的杂质和缺陷称为陷阱中心。 13、平衡态:指的是系统内部一定的相互作用所引起的微观过程之间的平衡。 非平衡态:对半导体施加外界作用,破坏了热平衡条件,迫使它处于与热平衡状态相偏离的状态。 稳定态: 14、费米能级:电子占据几率为1/2的量子态所对应的能级。 准费米能级:导带费米能级和价带费米能级都是局部的费米能级,成为准费米能级。 15、绝缘体能带结构:价带全部被电子填满,禁带上面的导带是空带,且禁带宽度较大。

半导体物理名词解释

(1)晶态:固体材料中的原子有规律的周期性排列,或称为长程有序。 (2)非晶态:固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。 (3)准晶态:介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。 (4)单晶:原子呈周期性排列的晶体。 (5)多晶:由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。 (6)原子价键:主要的原子价键有共价键、离子键、π键和金属键。 (7)共价键与非极性共价键:共价键是相邻原子间通过共用自旋方向相反的电子对电子云重叠)与原子核间的静电作用形成的,成键的条件是成键原子得失电子的能力相或是差别较小,或者是成键原子一方有孤对电子(配位体),另一方有空轨道(中心离如果相邻原子吸引电子的能力是一样的,则共用电子对不会发生偏移,这样的共价就是非极性共价键。共价键的数目遵从8-N原则 (8)空穴:光激发或热激发等激发因素会使原子键断裂而释放出电子,在断键处少掉1个电子,等效于留下一个带(+q)电量的正电荷在键电子原来所在的位置,这就是空穴 (9)半导体的载流子:有两种载流子,带负电的电子和带正电的空穴。 (10)基态:在0K下,半导体中的电子空穴对产生之前的固体所处的状态。(11)激发态:电子空穴对产生之后的固体所处的状态 (12)光激发:光照产生电子空穴对的过程。

(1)量子:热辐射的粒子形态。 (2)德布罗意波长:普朗克常量与粒子的动量p的比值。 (3)海森伯堡测不准原理:对于同一粒子,不可能同时确定其坐标和动量。 (4)量子化能级:束缚态粒子的分立的能级。 (5)波粒二象性:微观粒子有时表现为波动形态,而电磁波有时表现为粒子形态。 (6)光生载流子:光照产生的载流子。 (7)热生载流子:热激发产生的载流子 (8)半导体能带结构:分为E-k图和E-x图。 (9)导带:价带上能量最低的允带 (10)价带:价电子所在的允带。 (11)禁带:导带底与价带顶之间的能量区域 (12)禁带宽度:导带底与价带顶之间的能量差。 (13)直接能隙:跃迁前后导带底对应的波数的位置与价带顶所对应波数相同的能隙类型 (14)直接能隙半导体:能隙为直接能隙的半导体 (15)间接能隙:跃迁前后kv的位置与kc不同的能隙类型。 (16)间接能隙半导体:能隙为间接能隙的半导体 第三章 (1)产生:电子被激发到导带或(和)空穴被激发到价带的过程,它们伴随着产生电子或空穴

半导体物理名词解释

半导体物理名词解释 金刚石型结构:金刚石结构是一种由相同原子构成的复式晶体,它是由两个面心立方晶胞沿立方体的空间对角线彼此位移四分之一空间对角线长度套构而成。每个原子周围都有4个最近邻的原子,组成一个正四面体结构。 闪锌矿型结构:闪锌矿型结构的晶胞,它是由两类原子各自组成的面心立方晶格,沿空间对角线彼此位移四分之一空间对角线长度套构而成。 有效质量:粒子在晶体中运动时具有的等效质量,它概括了半导体内部势场的作用。有效质量表达式为: 费米能级: 费米能级是T=0 K 时电子系统中电子占据态和 未占据态的分界线,是T=0 K 时系统中电子所能具有的最高能量。 准费米能级:统一的费米能级是热平衡状态的标志。当外界的影响破坏了热平衡,使半导体处于非平衡状态时,就不再存在统一的费米能级。但是可以认为,分别就导带和价带中的电子讲,他们各自基本上处于平衡状态,导带与价带之间处于不平衡状态。因为费米能级和统计分布函数对导带和价带各自仍是适用的,可以引入导带费米能级和价带费米能级,它们都是局部的费米能级。称为“准费米能级” 费米面:将自由电子的能量E 等于费米能级Ef 的等能面称为费米面。 费米分布:大量电子在不同能量量子态上的统计分布。费米分布函数为: 施主能级:通过施主掺杂在半导体的禁带中形成缺陷能级,被子施主杂质束缚的电子能量状态称为施主能级。 受主能级:通过受主掺杂在半导体的禁带中形成缺陷能级,被受主杂质束缚的空穴的能量状态称为受主能级。 禁带:能带结构中能态密度为零的能量区间。 价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。 导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。 222*dk E d h m n =T k E E F e E f 011)(-+=

半导体物理-名词解释

半导体物理名词解释 1. 受主杂质 杂质在半导体中成键时,产生一个空穴。当其他电子来填补这个空穴时,相当于这个空穴电离,同时杂质原子成为负电中心。 2. 施主杂质 掺杂离子进入本征半导体晶格后,杂质原子容易失去一个电子成为自由电子,这个杂质原子叫施主。 3. 间接复合 电子和空穴通过禁带中的杂质或缺陷能级进行复合。 4. 直接复合 电子在导带和价带之间直接跃迁所引起的非平衡载流子的复合过程。 5. 载流子产生率 单位时间内载流子的产生数量。 6. 扩散长度 非平衡载流子深入样品的平均距离。 7. 非平衡载流子的寿命 非平衡载流子的平均生存时间。 8. 费米能级 费米能级是绝对零度时电子的最高能级。 9. 迁移率 单位电场强度下载流子所获得的漂移速率。

10. 功函数 功函数是指真空电子能级E0与半导体的费米能级E F之差。11. 表面态 晶体的自由表面的存在,使得周期性势场在表面处发生中断,引起附加能级,电子被局域在表面附近,这种电子状态称为表面态,所对应的能级为表面能级。 12. 电子亲和能 真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。 13. 同质结 同质结就是同一种半导体形成的结,包括pn结,pp结,nn结。 14. 异质结 异质结就是由不同种半导体材料形成的结,包括pn结,pp结,nn结。 15. 非平衡载流子 半导体中比热平衡时所多出的额外载流子。 16. 施主杂质 掺杂离子进入本征半导体晶格后,杂质原子容易失去一个电子成为自由电子,这个杂质原子叫施主。 17. 本征激发 当有能量大于禁带宽度的光子照射到半导体表面时,满带中的电子吸收这个能量,跃迁到导带产生一个自由电子和自由空穴,这一过

半导体物理(名词解释)

共有化运动:在半导体中,由于原子之间的相互作用,电子不再局限于某个原子,而是可以在整个晶体中自由运动的现象 能带特点:分裂的每一个能带称为允带。允带间的能量范围称为禁带 内层原子受到的束缚强,共有化运动弱,能级分裂小,能带窄,外层原子受束缚弱,共有化运动强,能级分裂明显,能带宽 价带是指晶体中最低能量的,能带其中的电子通常被束缚在原子或分子中,不能自由移动 导带是指晶体中能量较高的,能带其中的电子可以自由移动并参与导电 禁带是指晶体中价带和导带之间的能量区域,其中不存在允许的电子能量状态 允带是指晶体中允许电子存在的能量状态所组成的能带 本征激发:价带上的电子被激发成为准自由电子,即价带电子激发成为导带电子的过程 有效质量体现了晶格周期性势场的影响 能带底部的有效质量大于零,能带顶部的有效质量小于零 有效质量具有方向性 能带宽,有效质量小,能带窄,有效质量大 空穴:半导体中,由于电子的运动而形成的空位 满带中的电子不导电 施主杂质:为半导体材料提供导电电子的杂质 受主杂质:为半导体材料提供导电空穴的杂质 杂质电离:价电子脱离杂质原子成为自由电子的过程 施主能级:被失主杂质束缚的电子的能量状态(多余电子的杂质能级) 受主能级:被受主杂质所束缚的空穴的能量状态(多余空穴的杂质能级) N型半导体:依靠导带电子导电的半导体 P型半导体:依靠空穴导电的半导体

浅能级杂质:施主或受主能级离导带底或价带顶很近,杂质电离能很小 深能级杂质:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。 杂质的补偿作用:半导体中同时存在施主杂质和受主杂质时,施主杂质和受主杂质之间有相互抵消的作用 ND>NA,ND-NA为有效施主浓度 ND<NA,NA-ND为有效受主浓度 弗伦克尔缺陷:间隙,原子和空位是成对出现的 肖特基缺陷:只在晶体内形成空穴而无间隙原子 空穴和替位原子都是点缺陷 位错是线缺陷 状态密度:在能带中能量E附近,每单位能量间隔内的量子态数 有效质量大的能带状态密度大 费米分布函数f(E):描述每个量子态被电子占据的几率随E的变化,f(E)=1/[1+exp((E-EF)/k0T)] 费米能级EF是系统的化学势:指温度为绝对零度时固体能带中充满电子的最高能级 载流子的复合:电子从高能量的量子态跃迁到低能量的量子态,并向晶格放出一定能量,从而使导带中的电子和价带中的空穴不断减少 热平衡状态:在一定的温度下,电子从低能量的量子态跃迁到高能量的量子状态及电子从高能量的量子态跃迁到低能量的量子态这两个相反过程之间建立起动态平衡。 本征半导体:一块没有杂质和缺陷的半导体 本征载流子:本征半导体中由热激发产生的电子 电子和空穴的浓度乘积和费米能级无关,只取决于温度,与所含杂质无关 不能应用波尔兹曼分布函数,而必须用费米分布函数来分析导带中的电子及夹带中的空穴的统计分布问题,这种情况称为载流子的简并化 简并半导体:发生载流子简并化的半导体(在杂质浓度超过一定数量后,载流子开始简便化的现象称为重掺杂这种半导体称为简并半导体)

半导体物理名词解释

半导体物理名词解释

窄效应。 1.欧姆定律的微分形式:把通过导体中某一点的电流密度和该处的电导率及电场强度 直接联系起来的式子称为欧姆定律的微分形式。J=σε 2.漂移运动和漂移速度:有外加电压时,导体内部的自由电子受到电场力的作用,沿着电场的反方向作定向运动构成电流。电子在电场力的作用下的这种运动称为漂移运动,定向运动的速度称为漂移速度。 3.电子的迁移率:表示单位场强下的平均漂移速度,单位为m2/V·s 4.载流子的散射:载流子在半导体中运动时,不断与热振动着的晶格原子或电离了的杂质离子发生作用,或者说发生碰撞,碰撞后载流子速度的大小及方向就发生改变,用波的概念,就是说电子波在半导体中传播时遭到了散射。 5.平均自由时间和散射概率的关系:载流子在电场中作漂移运动时,只有在连续两次散射之间的时间内才作加速运动,这段时间称为自由时间。取极多次而求得其平均值称为载流子的平均自由时间。其数值等于散射概率的倒数。 6.电导率、迁移率和平均自由时间的关系: { n型 σn=nqμn=nq2τn m n∗ p型 σp=pqμp=nq2p m p∗ 混合型 σ=nqμn+pqμp=nq2τn m n∗ +nq2p m p∗ 1.载流子的产生(复合):产生非平衡载流子的外部作用撤除后,由于半导体的内部作用,使它由非平衡态恢复到平衡态,过剩载流子逐渐消失。这一过程称为非平衡载流子的复合。 载流子的寿命:涛=△P比U 2.过剩电子(空穴):比平衡状态多出来的这部分载流子 3.产生(复合)率:单位时间单位体积内产生的非平衡载流子数。单位时间单位体积

内净复合消失的电子-空穴对数称为非平衡载流子的复合率。 4.小注入:在一般情况下,注入的非平衡载流子浓度比平衡时的多数载流子浓度小得多,对n型材料,△n<

固态电子论 半导体物理 电子科学与技术专业课 半导体物理部分名词解释

1.有效质量:定义:222 *dk E d m n 为电子的有效质量。在能带顶有效质量为正值,在能带底有效质量为负值。他概括了半导体内部的势场作用。使得在解决半导体内部电子受外力作用下的运动规律时,可以不用考虑半导体内部势场的作用。有效质量与能量对于k 的二次微商成反比,内层电子能带窄,有效质量大,外层电子能带宽,有效质量小。 2.空穴:是价带顶部附近的电子激发到导带后留下的价带空状态 带正电荷 当温度不为零时,共价键上一个电子挣脱共价键的束缚进入晶格间隙形成导电电子,在原共价键处形成空状态,为了满足电中性,该空状态带一个正电荷。当另一个共价电子填这个空位…相当于空位在移动,把这个带一个单位正电荷的空位称为空穴 用空穴的概念,可以把价带大量电子对电流的贡献用少量的空穴表达了。 3.施主杂质:V 族元素在硅、锗中电离时能够释放电子而产生导电电子并形成正电中心,称此类杂质为施主杂质或n 型杂质。 相关的: 施主杂质向导带释放电子的过程为施主电离 施主杂质未电离之前是电中性的称为中性态或束缚态;电离后成为正电中心称为离化态或电离态 使多余的价电子挣脱束缚成为导电电子所需要的最小能量称为施主电离能,施主电离能为ΔED 被施主杂质束缚的电子的能量状态称为施主能级,记为ED ,。 4.施主杂质电离后成为不可移动的带正电的施主离子,同时向导带提供电子,使半导体成为主要依靠导带电子导电的n 型半导体(也称电子型半导体)。 5.受主杂质:III 族元素在硅、锗中电离时能够接受电子而产生导电空穴并形成负电中心,称此类杂质为受主杂质或p 型杂质。 相关的: 受主杂质释放空穴的过程称为受主电离 使空穴挣脱束缚成为导电空穴所需要的最小能量称为受主电离能,记为ΔEA 空穴被受主杂质束缚时的能量状态称为受主能级,记为EA 受主杂质电离后成为不可移动的带负电的受主离子,同时向价带提供空穴,使半导体成为主要依靠空穴导电的p 型半导体(也称空穴型半导体)。 5.深能级杂质:非Ⅲ、Ⅴ族杂质在Si 、Ge 的禁带中产生的施主能级远离导带底,受主能级远离价带顶。杂质电离能大,能够产生多次电离。 深能级:施主能级远离导带底,受主能级远离价带顶。 深能级的基本特点: 1、含量极少,而且能级较深,不易在室温下电离,对载流子浓度影响不大; 2、一般会产生多重能级,甚至既产生施主能级也产生受主能级。 3、能级位置利于促进载流子的复合,其复合作用比浅能级杂质强,使少数载流子寿命降低,称这些杂质为复合中心杂质。(在第五章详细讨论) 4、深能级杂质电离后对载流子起散射作用,使载流子迁移率减少,导电性能下降。 6.浅能级杂质:电离能小的杂质称为浅能级杂质。 所谓浅能级,是指施主能级靠近导带底,受主能级靠近价带顶。

半导体物理与器件第7章到第13章名词解释

半导体物理与器件第7章到第13章名词解释 1、Abrupt junction approximation (突变结近似) The assumption that there is an abrupt discontinuity in space charge density between the space charge region and neutral semiconductor region. 认为从中性半导体区到空间电荷区的空间电荷密度有一个突然的不连续。 2、Depletion layer approximation (耗尽层近似) The number of carriers is almost zero due to the strong built-in electric field in the space charge region, that the charge in the space charge region is almost completely provided ionized impurity, this space charge region is called depletion layer. 由于空间电荷区较强的内建电场,载流子的数量几乎为零,因此可以认为空间电荷区中的电荷几乎完全是由电离杂质所提供的,这种空间电荷区就称为耗尽层。 3、Built-in electric field (内建电场) An electric field due to the separation of positive and negative space charge densities in the depletion region. 由于耗尽区正负空间电荷相互分离而形成的电场。 4、Built-in potential harrier (内建电势差) The electrostatic potential difference between the p and n regions of a pn junction in thermal equilibrium. 热平衡状态下pn结内p区与n区的静电电势差。 5、Depletion region/space charge region/barrier region (耗尽区,空间电荷区,势垒区) The region on either side of the metallurgical junction in which there is a net charge density due to ionized donors in the n-region and ionized acceptors in the p region. 冶金结两侧由于n区内施主电离和p区内受主电离而形成的带净

半导体物理之名词解释

1•迁移率 参考答案: 单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力, 是半导体物理中重要的概念和参数之一。迁移率的表达式为:-1* m 可见,有效质量和弛豫时间(散射)是影响迁移率的因素。 影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。 - neq pei p 2•过剩载流子 参考答案: 在非平衡状态下,载流子的分布函数和浓度将与热平衡时的情形不同。非平衡状态下的载流 子称为非平衡载流子。将非平衡载流子浓度超过热平衡时浓度的部分,称为过剩载流子。 非平衡过剩载流子浓度:A n =n _n0,A p = p _p0,且满足电中性条件:A n =^p。可以 产生过剩载流子的外界影响包括光照(光注入)、外加电压(电注入)等。 2 对于注入情形,通过光照或外加电压(如碰撞电离)产生过剩载流子:np n,对于抽取 2 情形,通过外加电压使得载流子浓度减小:n p:::n。 3. n型半导体、p型半导体 N型半导体:也称为电子型半导体.N型半导体即自由电子浓度远大于空穴浓度的杂质半导 体•在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型 半导体•在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电•自由电子主要由杂质原子提供,空穴由热激发形成•掺入的杂质越多,多子(自由电子)的浓度就越高,导电性 能就越强• P型半导体:也称为空穴型半导体P型半导体即空穴浓度远大于自由电子浓度的杂质半导 体•在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导 体•在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电•空穴主要由杂质原子提供自由电子由热激发形成•掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强• 4. 能带

相关文档
相关文档 最新文档