文档库 最新最全的文档下载
当前位置:文档库 › 静电场中的高斯定理

静电场中的高斯定理

静电场中的高斯定理:

高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为

01()1/n

i i S E ds q φε==•=∑⎰⎰ (1)

高斯定理是用来求场强??E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种:

1) 球对称性, 如点电荷, 均匀带电球面或球体等;

2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面

3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。

根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是:

1 待求场强的场点必须在高斯面上;○

2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○

3 与E 垂直的那部分高斯面上各点的场强应相等;○

4 高斯面的形状应是最简单的几何面。

最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。

下面举一些例子来说静电场中高定理的应用:

例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。试求球体内外的场强分布及其方向。

解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 23d d 4d 4d q V Ar r r Ar r ρ==⋅π=π

在径为r 的球面内包含的总电荷为

430d 4d Ar r r A V q V r

ππρ==⋅=⎰⎰⎰⎰ ()r R ≤

以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅

得到 ()0214/εAr E =, (r ≤R )

方向沿径向向外

在球体外作一半径为r 的同心高斯球面,按高斯定理有

0422/4εAR r E π=π⋅

得到 ()20424/r AR E ε=,()r R > 方向沿径向向外

例题2:有两个同心的均匀带电球面,半径分别为1R 、2R )(21R R <,若大球面的面电荷密度为σ,且大球面外的电场强度为零,求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。 解: (1)设小球面上的电荷密度为σ',在大球面外作同心的球面为高斯面,

由高斯定理: 0

'1220int 4'4d επσπσεR R q S E S ⋅+⋅==⋅⎰⎰ ∵大球面外0=E ∴ 2221440R R σπσπ'⋅+⋅=

解得: 221()R R σσ'=- (2) 大球面内各点的场强两个均匀带电球面场强的迭加:内部场强为零,外部相当点电荷

在1r R <区域: 00021=+=+=E E E

在12R r R <<区域: 2112204'04R E E E r πσπε=+=+=2

20⎪⎭⎫ ⎝⎛-r R εσ 2 对高斯定理的几点说明

高斯定理是电磁学中的重要定理之一。其数学表达式为

01

()1/n

i i S E ds q φε==•=∑⎰⎰ 它表示通过闭合曲面的电通量等于该闭合曲面内电荷代数和的0

1ε倍。

静电场的高斯定理

302-静电场的高斯定理 1 选择题 1. 一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化:〔 〕 ()A 将另一点电荷放在高斯面外; ()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内; ()D 将高斯面半径缩小。 答案:()B 2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP=OT ,那么〔 〕 ()A 穿过S 面的电通量改变,O 点的场强大小不变; ()B 穿过S 面的电通量改变,O 点的场强大小改变; ()C 穿过S 面的电通量不变,O 点的场强大小改变; ()D 穿过S 面的电通量不变,O 点的场强大小不变。 答案:()C 3. 如图所示,闭合面S 内有一点电荷 Q ,P 为S 面上一点,在S 面外A 点有一点电荷'Q ,若将电荷'Q 移至 B 点,则;〔 〕 ()A S 面的总通量改变,P 点场强不变; ()B S 面的总通量不变,P 点场强改变; ()C S 面的总通量和P 点场强都不变; ()D S 面的总通量和P 点场强都改变。 答案:()B 4. 已知一高斯面所包围的体积内电荷代数和 0i q =∑,则可肯定: 〔 〕 ()A ()B ()C () D 答案:()C 5. 如图所示,一球对称性静电场的~E r 关系曲线,请指出该电场是由下列哪种带电体产生的(E 表示电场强度的大小,r 表示离对称中心的距离)〔 〕 ()A 点电荷; ()B 半径为R 的均匀带电球体; ()C 半径为R 的均匀带电球面; ()D 内外半径分别为r 和R 的同心均匀带球壳。 答案:()C 6. 半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为:〔 〕 答案:()B r ()A ()B ()C ()D

静电场的高斯定理并简述其物理意义

静电场的高斯定理并简述其物理意义 静电场是一种空间内动态分布的电场,它是一种广泛存在的自然标志,并在物理和化学研究中起着重要的作用。为了更有效地研究静电场,18世纪德国数学家 Karl Gauss出了静电场的高斯定理。它定义了根据电场中的电荷及其分布情况,计算其在任意空间点的电场强度和电位的关系。高斯定理表明,电场强度和电位的计算仅取决于电荷和受作用空间点之间的距离,与其他点没有任何关系。 高斯定理的计算过程如下:首先,考虑电荷 Q分布,它分布在 某个体积 V。那么,在体积 V,电荷 Q 产生的电场强度 E电位 U 之间的关系可以表示为: E = -U 其中,U 为位积,它是指空间内电位U的变化量,即电位的导数。根据高斯定理,在体积 V的电位的导数的平均值可以表示为: U = 1/4πε_0 Q/r^2 dV 由此可以得出,体积 V的电场强度 E电位 U 之间的关系为: E = 1/4πε_0 Q/r^2 dV 其中,ε_0 为介电常数,r 为电荷 Q受作用空间点的距离。此外,dV 为体积 V每个元素体积。 根据高斯定理,对总电荷 Q应的总电场强度 E电位 U说,只要知道电荷 Q分布情况、受作用空间点的位置以及它们之间的距离, 就可以得出相关的电场强度 E电位 U 之间的关系。 高斯定理的最重要的物理意义是,它定义了一种有效的计算方法,

可以计算出电荷 Q其分布情况对应的电场强度 E电位 U 之间的关系,从而更有效地研究静电场。 此外,高斯定理还可以用于计算电荷间的相互作用,从而更好地了解电荷 Q其分布情况所产生的电场强度 E电位 U 之间的关系。根据高斯定理,只要知道电荷之间的距离,就可以计算出它们之间的电场强度 E电位 U 之间的关系。 综上所述,高斯定理在研究静电场方面具有重要意义。它为研究者提供了一种有效的计算方法,让他们更好地了解电荷及其分布情况对应的电场强度 E电位 U 之间的关系,从而更好地理解静电场的物理性质。

高斯定理

简析高斯定理在电场中的应用 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 () 1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 步骤: 1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过 该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n 与E 平行时, E 的大小要求处处相等,使得E 能提到积分号外面; 3.计算电通量???S d E 和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。 应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。 利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。 典型例题: 例题1、设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3) 带电面右半空间

静电场中高斯定理

静电场中的高斯定理: 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01()1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 下面举一些例子来说静电场中高定理的应用: 例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。试求球体内外的场强分布及其方向。 解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 23d d 4d 4d q V Ar r r Ar r ρ==?π=π 在径为r 的球面内包含的总电荷为 430d 4d Ar r r A V q V r ππρ==?=???? ()r R ≤

静电场的高斯定理的数学表达式为

静电场的高斯定理的数学表达式为 静电场的高斯定理是物理学中一个重要的定理,它可以帮助我们了解和描述电场的变化以及电荷(电荷量或电荷密度)与它们之间的关系。该定理以19世纪德国数学家卡尔高斯(Karl Gauss)命名,他在1813年发表了第一个有关静电场的论文。高斯定理有几种不同的数学表达式,它们可以描述不同类型的物理系统。 首先,让我们来看看静电场的概念。电场是一种场,它由一组随时间变化的电荷产生的电力线组成。这些线描述电力在某个空间区域内的分布。在这里,我们只考虑静电场,它是由平衡状态的电荷产生的(即不会随时间变化)。此外,静电场在电磁学中也被称为电场,是由平衡状态的电荷产生的。 接下来,我们来看看静电场的高斯定理的数学表达式。该定理建立在一个有限空间上,它表明,在该空间内,电场的总变化量可以用电荷的总量来表示,也就是说,电场的总变化量可以用电荷的总量来描述。以下是静电场的高斯定理的数学表达式: begin{equation}vec abla cdot vec E = rho/epsilon_0end{equation} 其中,$vec E$代表了一维空间上电场的分量;$vec abla$表示空间离散梯度;$rho$是电荷密度,$epsilon_0$是真空介电常数。 通过这个定理,可以表示电荷密度与电力线的关系,并且可以使用它来求解静电场。通常情况下,可以利用它来计算某个特定点处的

电力线的密度和方向。 总的来说,静电场的高斯定理的数学表达式是一种强有力的工具,它可以帮助我们理解和描述电场的变化以及电荷和它们之间的关系。该定理的数学表达式也可以用来求解静电场的电力线的方向和密度,这有时对物理系统的研究是非常有价值的。

§11-3静电场的高斯定理

§11-3 静电场的高斯定理 一、 电场线 电场线是为了描述电场所引进的辅助概念,它并不真实存在。 1、E 用电场线描述 规定:E 方向:电力线切线方向 大小:E 的大小=该电力线密度=垂直通过单位面积的电力线条数= ds dN 即 ds dN E = (即:某点场强大小=过该点并垂直于E 的面元上的电力线密度。) 2、静电场中电场线性质 ⑴不闭合、不中断、起自正电荷,止于负电荷。 ⑵任意两条电场线不能相交,这是某一点只有一个场强方向的要求。 二、 电通量 定义:通过电场中某一面的电力线数叫做通过该面的电场强度通量,用e Φ表示。 下面分几种情况讨论。 1、匀强电场 ⑴平面S 与E 垂直。如图所示,由E 的 大小描述可知: ⑵平面S 与E 夹角为θ,如图所示,由E 的大小描述知: S E ES ES e ⋅===Φ⊥θcos )(n S S = ⎧ ⎪⎨ ⎪ ⎩

式中n 为S 的单位法线向量。 2、在任意电场中通过任意曲面S 的电通量 如图所示,在S 上取面元dS ,dS 可看成平面,dS 上 E 可视为均匀,设n 为S d 单位法向向量,S d 与该处E 夹角E 为θ,则通过dS 电场强度通量为: S d E d e ⋅=Φ 通过曲面S 的电场强度通量为: ⎰⎰⋅=Φ=Φs e e S d E d 在任意电场中通过封闭曲面的电场强度通量 e s E dS Φ= ⋅⎰ 注意:通常取面元外法向为正。 三、高斯定理 高斯定理是关于通过电场中任一闭合曲面电通量 的定理,现在从一简单例子讲起。 1、如图所示,q 为正点电荷,S 为以q 为中心以任 意r 为半径的球面,S 上任一点p 处E 为: r e r q E 2 04πε= 2、通过闭合曲面S 的电场强度通量为: ⎰ ⎰ ⎰=⋅⋅=⋅=Φs s r s e dS r q e S d r q S d E 2 02 044πεπε (r 、ds 同向)

写出静电场的高斯定理并简述其物理意义

写出静电场的高斯定理并简述其 物理意义

1. 静电场的高斯定理 静电场的高斯定理:设$\Omega$为任意闭合表面,其上的曲线为 $\partial\Omega$,$\vec{E}$为$\Omega$内的静电场,则有: $$\oint_{\partial\Omega}\vec{E}\cdot d\vec{s}=\frac{1}{\varepsilon_0}\iint_{\Omega} \rho d\Omega$$ 其中$\varepsilon_0$为真空介电常数,$\rho$为电荷密度。 物理意义:静电场的高斯定理表明,在任意闭合表面上,电场的积分 等于电荷的积分,即电场的离散性与电荷的离散性是相对应的。 2. 高斯定理的物理意义 高斯定理是物理学中最重要的定理之一,它指出了静电场的分布特征。它表明,在静电场中,电荷的数量是由电荷的空间分布决定的。它还 表明,电荷的空间分布可以通过求解梯度方程来确定。 高斯定理的物理意义是:在静电场中,电荷的空间分布可以通过梯度 方程来确定,并且电荷的数量取决于电荷的空间分布。因此,高斯定 理可以用来解释静电场中电荷的分布特征,从而更好地理解物理现象。 3. 高斯定理的应用

高斯定理可以用来计算静电场中电荷的电势,它表明:在一个由静电场包围的任意闭合表面上,电荷的积分是零,即电荷的总流入量等于总流出量。这表明,在任何一个点上,电荷的流出量等于流入量。这个定理也可以用来计算电荷的电场强度,即电荷的电场强度在任何一个点上都是由电荷的电荷密度决定的。此外,高斯定理还可以用来计算电荷的电势能量,即电荷的电势能量在任何一个点上都是由电荷的电荷密度决定的。 4. 高斯定理的推导

相关文档
相关文档 最新文档