文档库 最新最全的文档下载
当前位置:文档库 › 一氧化氮的作用

一氧化氮的作用

一氧化氮的作用
一氧化氮的作用

一氧化氮的作用

NO它是一种新型生物信使分子,广泛分布于生物体内各组织中,1992年被美国Science杂志评选为明星分子。NO具有舒张血管、降低血压、抑制平滑肌细胞增殖和血小板黏附,参与免疫反应、杀灭肿瘤细胞和微生物等重要的生理作用;在高血压、心肌缺血、脑卒中等许多心血管疾病的发病和自身免疫性疾病、退行性疾病及炎症的发生演变中具有重要的临床意义。NO功能失调是导致心脑血管疾病发生发展的重要因素。

一氧化氮(Nitric oxide)是大家早已熟悉的一个小分子,长期以来,在生命科学中一直没有引起人们的注意。但是,80年代末,科学家发现,一氧化氮在各种生化过程中,起着关键的作用,具有神奇的生理调节功能。对一氧化氮的研究,迅速发展成为一门目前最活跃的生命科学前沿领域。

近期的研究已表明,一氧化氮具有免疫调节、神经传递、血压生理调控和血小板凝聚的抑制等生理功能。在许多组织中,尽管其真正的释放量目前尚难于检测,但已确知会释放出不同浓度的一氧比氮,且浓度的变化与机体的生理机能紧密相关。许多疾病,包括基因突变(癌变,动脉硬化等)和生物机体中毒等,可能是一氧化氮的释放或调节的不正常引起的。进一步的研究还发明,一些药物可以通过新陈代谢来调节一氧化氮的生理机能,使其变成有益的分子,清除机体内有害的代谢物,鉴于一氧化氮的神奇生理调节作用,一旦其神秘的调节机理被科学家们所揭开,人们就可以开发与一氧化氮相关的药物,

来治疗许多人类至今无法攻克的顽症,例如高血压、偏头痛、动脉硬化,甚至癌症。

1. 一氧化氮对于血管平滑肌的特殊功能

Nitric Oxide 氨基酸在体内有充分的酵素状态下才可顺利转化,转化时会产生一氧化氮(Nitric Oxide),然而一氧化氮分子由血管内皮细胞转入平滑肌细胞,细胞连锁反应使细胞收缩因子Myosin 与Actin 分离,平滑肌细胞放,致使血管扩张,血管放松、柔软,保持弹性,一氧化氮放松血管,有利预防血垢油脂物质沉淀,蓄积在血管内壁,造成动脉硬化或阻塞、高血压、中风、心绞痛等疾病。

2. 对血压作用

一氧化氮扩张血管,降低血压,增进血流,预防血栓形成,降低胆固醇,血管内皮细胞控制平滑肌的松懈和血管扩张作用是一氧化氮(Nitric Oxide)的特殊功能。

3. 对于心脏功能

一氧化氮(Nitric Oxide)增进血流,扩张血管,增加氧气供应,预防血栓形成,故能保护心脏功能,预防心血管损伤。冠状动脉疾病、狭心症、心梗塞等传

统的心脏病,处方硝酸甘油的疗效,经诺贝尔医学奖Ferid Murad 博士证实是能放出NO 的效果,一氧化氮帮助调整脉冲电传导规律,使心跳频率正常。

4. 对于免疫系统功能

当有感染时,免疫细胞爆发一氧化氮(Nitric Oxide),杀死细菌,滤

过性毒素,寄生虫传染,一氧化氮(Nitric Oxide)参与骨髓产生血液细胞,增加生产Killer T-cells 免疫杀手细胞。NITRO FX 含大量抗自由基、抗氧化物质,常用有抗衰老功用。

5. 对于脑的功能

一氧化氮(Nitric Oxide)作为神经传导因子传递神经细胞间的信息,促进神经细胞之间的沟通,协调学习、记忆、睡眠调整行为能力,并影响胃肠消化功能。事实上,从老年痴呆症到糖尿病,痔疮等,一氧化氮(Nitric Oxide)的产量不足会导致病情恶化。

6. 对于性功能

一氧化氮(Nitric Oxide)对于男女生殖器具有刺激、复原、增强其生理反应的特殊功能,神奇的威而刚即是以创造增强一氧化氮(Nitric Oxide)效果为其疗效,适量的一氧化氮(Nitric Oxide)能增进性高潮与增长性刺激的持久。

7. 抗炎消炎功能

一氧化氮(Nitric Oxide)能缓解发炎与风湿症,对于肌腱关节的炎症与疼痛,帮助消炎缓解,修复损伤的细胞组织。吗啡的疗效是产生一氧化氮(Nitric Oxide),但一氧化氮本身不会产生常习嗜好性,却是药物作用的有效部份。

8. 抗肿瘤作用

一氧化氮(Nitric Oxide)阻止肿瘤的生长,以增强免疫性,阻止自由基的氧化作用,对抗细胞的自由基复制,缩小肿瘤。

9. 对于骨骼肌作用

一氧化氮(Nitric Oxide)扩张血管供应与骨骼肌,对于运动或举重者能快速增长贫瘦的肌肉,增强力量,增加持久性并能使全身肌肉恢复疲劳,对于肌腱关节的疼痛,帮助消炎缓解。

10. 对于皮肤作用

一氧化氮(Nitric Oxide) 具有护肤,促进组织再生,上皮组织愈合,抗炎症免疫力等功能,含有丰富的护肤必须生理活性营养物,可改善皮肤黏膜的损伤,搔痒过敏症,靡烂与溃疡的愈合。

呼吸机参数简写 医学

呼吸机参数简写 一、呼吸机的作用及适应症: 1.作用:替代和改善外呼吸,降低呼吸做功。(主要是改善通气功能,对改善换气功能能力有限) 2.适应症:呼吸功能不全、呼吸衰竭;呼吸肌肉和神经等不可逆损害的替代治疗;危重病人的呼吸支持;术中及术后病人等。 二、呼吸机的组成、驱动、原理: 1.组成部分: (1)主机(ventilator):正压呼吸控制器、通气模式控制器、持续气流控制器、空氧混合器、压力感受器、流量感受器、呼气末正压发生器、触发装置、阀门系统、报警及监测装置等(由微电脑及电路等控制)。 (2)空气压缩机(compressor):中心供空气时不需要工作。 (3)外部管道系统:吸气管道(inspiratory tube)、气体加温湿化装置(humidifier)、呼气管道(expiratory tube)、集水杯。 2.驱动调节方式: (1)电动电控:不需空气压缩机,驱动调节均由电源控制。 (2)气动气控:需空、氧气源,逻辑元件调节参数。 (3)气动电控:多数现代呼吸机的驱动调节方式。 3.工作原理: (1)切换方式:吸气向呼气转换的方式。分为:时间、流速、压力、容量切换(2)限制方式:吸气时气体运送的方式(吸气气流由什么来管理)。分为:流速、压力、容量限制(多数靠设置流速或压力)。 (3)触发方式:呼气向吸气转换的方式。分为:机器控制(时间触发)和病人

触发(流量触发和压力触发)。 三、呼吸机的调试与监测: 1.呼吸机的检测:依呼吸机类型而定 2.控制部分: (1)模式选择:依据病情需要 (2)参数调节: ①潮气量(Tidal Volume):8~15ml/kg ;定容:VT=Flow×Ti(三者设定两者);定压:C=ΔV/ΔP(根据监测到的潮气量来设置吸气压力Inspirator Pressure)②吸气时间:Ti=60/RR,一般吸呼比(I:E)为1:1.5~2;吸气停顿时间:属吸气时间,一般设置呼吸周期的10%秒(应〈20%) ③吸气流速:Peak Flow键;流速波形:递增、正弦波、方波、递减 ④通气频率(RR):接近生理频率 ⑤氧浓度(FiO2,21%~100%):只要PaO2/FiO2满意,FiO2应尽量低,FiO2高于60%为高浓度氧 ⑥触发灵敏度:压力触发水平一般在基础压力下0.5~1.5cmH2O;流速触发水平一般在基础气流下1~3L/min ⑦呼气灵敏度(Esens):一般设置20~25% ⑧呼气末正压(PEEP):生理水平为3~5 cmH2O ⑨压力支持水平(Pressure Support):初始水平10~15 cmH2O ⑩吸气上升时间百分比(Insp RiseTime%)、压力上升梯度、压力斜坡(Pressure Scope)、流速加速百分比 (2)其它特殊功能键: ①吸气暂停键(InspPause):吸气末阻断法测定气道平台压

一氧化氮在植物体内的生理作用研究进展_综述

河北科技师范学院学报 第22卷第3期,2008年9月 Journal of Hebei Nor mal University of Science&Technol ogy Vol.22No.3Sep te mber2008 一氧化氮在植物体内的生理作用研究进展(综述) 齐 秀 东 (河北科技师范学院继续教育学院,河北秦皇岛,066004) 摘要:从一氧化氮在植物体内的生物合成,在植物体中的分布,对植物生长发育的作用以及与植物激素的关 系等方面综述了一氧化氮在植物体内的生理作用研究进展,并对今后的研究方向进行了展望。 关键词:一氧化氮;植物;生理作用;研究进展 中图分类号:Q945.3 文献标志码:A 文章编号:167227983(2008)0320017206 一氧化氮(nitric oxide,NO)是一种广泛存在于生物体内的活性分子。20世纪90年代,NO被确认参与调控动物的生理过程,曾经成为当时国际生物学和医学界的一项令人瞩目的发现。此后,NO在植物体内生理作用的研究,越来越多地引起植物学界的重视。但NO在植物上的研究与在动物上的研究相比差距很大,大多数领域的研究还处于起步阶段,很多问题诸如NO在植物生长发育中的作用,NO与植物的抗逆性以及NO与植物激素的关系等,都有待于进一步研究。 1 植物体内NO的生物合成 植物体内的NO是一种具有水溶性和脂溶性的小分子,具有自由基性质,容易得到或失去一个电子,能以一氧化氮自由基(NO.)、亚硝基阳离子(NO+)和硝酰阴离子(NO-)三种形式存在。不仅NO.具有生活活性,NO+和NO-也具有生物学效应[1]。无论是在细胞的水溶性原生质还是在脂溶性的膜系统,NO都能扩散移动。因此,NO一旦合成,就容易在细胞内和细胞间扩散,其作用范围主要是产生NO的细胞和邻近的细胞[2]。有资料表明,在甘蔗、玉米、向日葵、油菜、云杉和烟草等许多植物中都检测到NO的存在[3]。植物体内至少有三条途径产生NO,即硝酸还原酶(nitrate reductase, NR)途径、一氧化氮合酶(nitric oxide synthase,NOS)途径和非酶促途径。还有研究认为,在植物体内还存在黄嘌呤氧化还原酶(xanthine oxidoreductase,XOR)途径和亚硝酸2NO还原酶途径[4]。 1.1 酶促反应途径 1.1.1 由硝酸还原酶(NR)介导产生 在高等植物中,NR是氮代谢的关键酶。NR介导产生NO是最重要的途径之一。早在1981年,Har per[5]在分析大豆叶片组织NR活性时就检测到NO X 的产生。Dean和Har per[6]进一步将组成型硝酸还 原酶(c NR)纯化并证实NO X 是NR所释放的,c NR的活性可以被其专一抑制剂叠氮化钠完全抑制。后来,Garcia2M ata 等[7]证实NO X 主要成分是NO,少量N 2 O和NO2。研究发现,太阳花、甘蔗、玉米、葡萄、菠菜和烟草等植物在一定条件也 可以产生NO[8]。 1.1.2 由一氧化氮合酶(nitric oxide synthase,NOS)催化合成 在哺乳动物中,内源性NO由NOS催化生成。它是以黄素腺嘌呤二核苷酸酸(F AD)、黄素单核苷酸(F MN)、血红素、四氢叶酸、Ca2+/Ca M、Z N2+为辅基,以L2精氨酸、O 2 及NAD2 PH为底物合成。其反应过程如下: L2精氨酸+NADPH+O2NOS NO+L2肌氨酸+NADP+ 首先,NOS中的F AD/F MN接受由NADPH提供的电子,使NOS呈还原型,还原型的NOS在Ca2+/Ca M和O 2 的协助下,使L2精氨酸末端胍氨基的氮原子羟化生成中间产物N W2烃基2L2精氨酸而结合在NOS上。羟化的L2精氨酸在NADP 作用下进一步生成NO和胍氨酸[9]。 最早证明植物中可能存在类似于哺乳动物中的NOS的实验,是N inne mann和Marer在豆科植物M ucuna kassj oo中检测到NOS活性。同时,Cuet o等在Lup inus ablus的根和茎节中也发现了NOS的活性。后来,Delledonne和Du mer等分别在烟草和大豆中检测到NOS活性。同样,在小麦、玉米和大豆等植物中也发现了类似的NOS活性[10]。 尽管在多种植物中检测到NOS的活性,也己从植物中鉴定了两组类NOS,一类是从拟南芥和烟草由病原菌诱导的NOS(i N OS),另一组是从拟南芥由激素活化的NOS(A t N OS1)[11,12],但至今在植物体内还没有发现与已知哺乳动物NOS 序列相似的基因或蛋白质[13]。 1.1.3 其它酶促反应途径 St ohr等[14]发现烟草根具有亚硝酸2NO还原酶活性,能产生NO。植物体中发现XOR的活收稿日期:2008205213;修改稿收到日期:2008208229

各元素在植物的作用

各元素在植物的作用 1. 氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2. 磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。 抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量(增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积,形成花青素(紫色) 3. 钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收;

抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变,减少病菌所需养分; 4. 钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5. 镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、Al3+、NH4+可引起Mg缺乏; 镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少6. 硫(S)的生理功能-----中量元素 生理功能:蛋白质和许多酶的组成成分,参与呼吸作用、脂肪代谢和氮代谢和淀粉合成。组成维生素B1、辅酶A和乙酰辅酶A等生理活性物质。 硫素缺乏:籽粒中蛋白质含量降低;影响面粉的烘烤质量; 蛋白质合成受阻,与缺氮症状类似,但是先出现在幼叶。 7.铁(Fe)生理功能:微量元素 生理功能:叶绿素合成所必需;参与体内氧化还原反应和电子传递; 参与核酸和蛋白质代谢;参与植物呼吸作用;还与碳水化合物、有机酸和维生素的合成有关。

小于2岁的婴幼儿呼出气一氧化氮与哮喘预测指数

2岁以下婴幼儿呼出气一氧化氮与哮喘预测指数研究 摘要: 背景介绍:呼出气一氧化氮测定被认为是气道嗜酸性炎症的一个间接性标记物。对于可以配合的儿童来说,有效的方法是一口气呼吸测定。对于不能配合的儿童,一口气的测定是不可能进行的,这就产生了在线和离线潮气呼吸测定方法进行检测。本研究目的就是分析2岁以下婴幼儿的在线多重呼吸测定FEno与哮喘预测指数(API)之间的关系。 材料和方法:2个月到2岁的婴幼儿,连续观察4个月的横断面研究。餐后进行多重呼吸在线FEno测定,肺呼气流速在40和60ml/s之间,应用稳定的化学发光分析仪(CLD88sp)。记录定量资料有:年龄、体重、IgE、嗜酸性粒细胞、FEno 值、肺流速。定性资料有:性别、特应性皮炎、过敏性鼻炎、食物和药物过敏、家族哮喘和过敏史、诊断和治疗情况。API与FEno的关系用Fisher精确检验法和T 检验分析,API与FEno的一致性用Cohen’s Kappa一致性检验分析。同时还分析嗜酸性粒细胞、IgE、特应性皮炎与FEno之间的关系(Fisher精确检验法和T检验分析) 结果:38名患儿中成功地完成的病例是32名(占84.21%)。平均年龄是 10.9±5.06个月。API阳性的病例比那些API阴性的有较高的FEno值,API与FEno 的一致性关系是0.71。 结论:在线潮气呼吸测得FEno值与API有显著地相关性和高水平的一致性。 背景介绍 在过去几年里,有些研究指出呼出气一氧化氮(FEno)作为气道嗜酸性炎症的取代标记的实用性。1FEno增高在哮喘儿童中被报道,还与这些病人的气道粘膜检测出的嗜酸性炎症有密切关联2。鉴于其高的判别能力,它已作为哮喘诊断的肺功能的补充应用于临床。3同样地,它被用作吸入糖皮质治疗的监测,因为它有高度敏感性可探测到剂量接受感应的改变,4以及甚至在还没有任何呼吸症状时就探查到肺功能的恶化。5 对配合的儿童,我们用一口气呼吸技术,呼气维持6-10秒检测。而不能配合的儿童,特别是那些3岁以下的儿童,FEno可通过无需镇静、多重呼吸(MB)在潮气状态下,应用在线和离线系统分析得到,这是依据发表在2005年6月的欧洲呼吸协会(ERS)和美国胸科协会(ATS)上的推荐建议,这种方法附有鼓励达到将近50ml/s呼气流速的(程序)。如果不能达到,那么可用镇静或在餐后睡眠状态下检测。 虽然它不是严格的标准化技术,一些研究者7,8记录了有关多重呼吸(MB)恒定流速(40-60ml/s)有效地在线测定的可能性的文献,在呼气期间应用连续的呼气阻力校正,通过自动的流速限制器(达到要求)。其他作者使用的是手动的流速限制9。Danial 等人10,11使用面罩在线和离线状态下多重呼吸测定FEno,并已发表了2-7岁儿童正常参考值。较小的儿童在线系统得到的数据显示与那些较大年龄通过在线一口气呼吸法得到的数据有良好的相关性。因此FEno很有可能被作为一个无创参数应用于小年龄哮喘和喘息发作诊断、疾病严重度的控制和疾病发作上。12,13

一氧化氮的药用价值

一氧化氮:从普通分子到医药明星 2008-12-17 19:00:12 来源: 网易探索(广州) 网友评论 6 条点击查看 以前治疗心血管疾病的药物主要是硝酸甘油,但医学界对这药物的作用机制并不清楚,而伊格纳罗和他的同仁发现其实真正起作用的是一氧化氮。 诺贝尔在一百多年前制造安全炸药时,曾把硝酸甘油作为主要原料之一。当时他患有严重的心绞痛,医生让他服用含“硝酸甘油”的药,却遭到他的激烈反对,在弥留之际,他曾这样说:“医生给我开的药竟是硝酸甘油,这难道不是对我一生巨大的讽刺吗?” 其实这并非讽刺。科学家在后来的研究中发现:硝酸甘油能舒张血管平滑肌,从而扩张血管。他们认为,肯定有一种叫做“内皮细胞舒张因子”的东西,如果找到它,就能打开人体机理奥秘的一片新天地,从而找到更有效的方式治疗心肌梗死等病。 这个因子究竟是什么?

1986年,这一百年谜团终于被伊格纳罗博士和其他两位药理学家破译,它不是猜测已久的蛋白质类大分子,而是简简单单的一氧化氮!顿时,一氧化氮摇身变成了明星分子。伊格纳罗(LouisJ.Ignarro)博士和其他两位研究者共同发现的,他们因发现有关一氧化氮在心血管系统中具有独特信号分子作用而于1998年获得诺贝尔医学奖。 伊格纳罗出生于美国,并且他所有的研究工作也是在美国完成的。他在纽约长大并完成了学前教育,在纽约的哥伦比亚大学获得化学和药物学专业的学位,然后在明尼苏达大学医学专业深造。获得了药理学博士学位,随后又考取了心血管病方面的专业资格。 虽然具有医学方面的教育背景,但是伊格纳罗并没有成为一名医生。尽管许多在学校学医的人立志要成为一名医生,治病救人,伊格纳罗却与众不同,选择了做研究工作。这一决定最终使他取得了巨大的事业成就。伊格纳罗的专业是新血管领域,因此他经常在课堂上谈到治疗心血管病的药物。要对学生讲解硝酸甘油,扩张血管、促进血液流动的药物。他说,当病人出现胸痛、心绞痛的时候,就意味着心脏的供氧不足。病人舌下含服硝酸甘油片不超过五分钟,疼痛便会消失。由于这种立竿见影的功效,一个多世纪以来,硝酸甘油被普遍用于治疗胸痛。 “硝酸甘油是一种药,但是它同时也是一种烈性的爆炸物,用于制造炸药。因此在我讲课的时候,也很想在自己的脑海里弄清楚,硝酸甘油这样的爆炸品怎么就能够用来治疗心绞痛的。我去了图书馆,想查看它到底是什么样的作用机理,但是我发现根本就没有人了解。”这位科学家回忆道。 伊格纳罗决定在实验室对硝酸甘油进行研究。经过三年的研究,他发现硝酸甘油本身并不是一种药物,可是当人体摄入之后,它就转变、代谢为一氧化氮。发现这一点之后,伊格纳罗开始研究一氧化氮的其他效用。他发现一氧化氮具有的健康益处远远超出他最初的猜想:它能降低血压,预防中风和心脏病。 然而令人吃惊的是,当时人们并不知道,人体本身居然可以产生一氧化氮,伊格纳罗介绍说,一氧化氮是一种随处可见的化合物,就是在空气中也存在。 在人体中,一氧化氮是一种非常小的分子,类似于氧气,出现在动脉内膜中。换而言之,是动脉内膜的细胞在制造一氧化氮。 “一氧化氮一旦生成之后,就与动脉中的肌肉细胞接触并使之放松,它扩张了动脉。这样就使得血压降低,从而改善血流”。 更重要的是,他接着说,这种化学品还能预防血液在一些危险的部位发生凝结。如果血液在心脏或脑部发生凝结,则病人就会罹患心脏病或中风。只要人体产生足够数量的一氧化氮,那么前面谈到的问题发生的几率就会大大降低。 伊格纳罗的发现还打破了人们认为一氧化氮是有毒物品这种错误观念。

呼出气一氧化氮测定系统

呼出气一氧化氮测定系统 1、项目名称及功能: 1.1进口呼出气一氧化氮测定系统一套。 1.2本产品用于检测人体呼出气与中(除去外源性NO)一氧化氮气体的浓度水平。为医生诊治哮喘、过敏性鼻炎等变异性非特异性气道炎症性疾病患者提供快速、准确及可靠的诊断和治疗依据。 2、技术规格及要求: 2.1应用范围: 1)哮喘; 2)过敏性鼻炎; 3)慢性咳嗽; 4)其他呼吸道炎症; 5)流行病学研究。 2.2测定范围:5ppb~300ppb(下呼吸道); 5ppb~2000ppb(上呼吸道)。 2.3反应时间:<100秒。 2.4精确度:当测定值<50ppb时,误差<±3ppb; 当测定值≥50ppb时,误差<±8%; 2.5技术标准:美国胸科学会和欧洲呼吸学会(ATS/ERS)。 *2.6 NO过滤功能:系统主机必须具有过滤除去外源性一氧化氮的装置和功能。 2.7必须具有全面的质量控制功能:比如具有但不限于当环境出现各种干扰信号、测定过程中呼吸过弱或过强(流速控制)、发生漏气、

咳嗽和逆向呼或吸情况时,系统主机应可自动强行终止测定,并出现相应的警示代码。应具有自检、流速提示及自动控制功能。 *2.8 标准配置鼻呼出一氧化氮含量检测(至少含有两种流速控制),用于上呼吸道疾病的诊断和治疗监控。 2.9 系统主机无需校对、无需维护,可独立测定,也可和计算机连接同步测定,系统软件须含有3D动画提示功能,便于儿童和体弱病人测定。 2.10 系统应包括主机系统软件和数据管理软件,两者可双向传输。数据能通过USB和蓝牙传输,数据管理软件可自动比较、综合分析结果,形成趋势曲线等。 2.11 设备无需校对。 2.12 认证:所投设备通过美国FDA及欧洲CE认证,并提供认证证书扫描件。 2.13 设备适合儿童及成人。

各元素在植物的作用(同名8940)

各元素在植物的作用(同名 8940) 各元素在植物的作用 1.氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2.磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳 水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量 (增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积, 形成花青素(紫色)

3.钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、 脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收; 抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变, 减少病菌所需养分; 4.钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5.镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、AI3+、NH4+可引起Mg缺乏;镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少 6.硫(S)的生理功能-----中量元素

钠元素对植物的危害和钾元素对植物的作用

钠元素对植物的危害和钾元素对植物的作用 以下是钠元素对植物的危害和钾元素对植物的作用详解。 一.钠离子对植物的危害 盐碱对植物可造成两种危害:一是毒害作用,当植物吸收进较多的钠离子或氯离子时,就会改变细胞膜的结构和功能。例如,植物细胞里的钠离子浓度过高时,细胞膜上原有的钙离子就会被钠离子所取代,使细胞膜出现微小的漏洞,膜产生渗漏现象,导致细胞内的离子种类和浓度发生变化,核酸和蛋白质的合成和分解的平衡受到破坏,从而严重影响植物的生长发育。同时,因盐分在细胞内的大量积累,还会引起原生质凝固,造成叶绿素破坏,光合作用率急剧下降。此外,还会使淀粉分解,造成保卫细胞中糖分增多、膨压增大,最终导致气孔扩张而大量失水。这些危害,都会造成植物死亡。二是提高了土壤的渗透压,给植物根的吸收作用造成了阻力,使植物吸水发生困难。结果植物体内出现严重缺水,光合作用和新陈代谢无法进行;同时,还会出现细胞脱水、植株萎蔫,最后导致植物死亡。 二.钾对植物的作用 1、酶类活化 在化学反应过程中,酶起着催化剂的作用。酶将各种分子聚集在一起,促成化学反应的进行。植物生长过程所涉及的60多种不同类型的酶均需要钾加以“活化”。钾可改变酶分子的物理构型,使适宜的化学活性位置暴露出来,参加反应。细胞的含钾量可决定酶的活化量,进而决定化学反应的速度,因此,钾进入细胞的速度可控制某一反应进行的速度。钾对酶的活化作用或许是钾在植物生长过程中最重要的功能之一。 2、水分利用 钾在植物根系内积累从而产生渗透压梯度,使水分吸入根系。缺钾植株吸水能力减弱,遇供水不足时,较易遭受胁迫。植株亦依靠钾素来调节其气孔(叶片与大气交换二氧化碳、水蒸汽和氧气的孔隙)的启闭。气孔作用的正常发挥有赖于供钾充足。当钾进入气孔两侧的保卫细胞时,细胞因充水而膨胀,孔隙张开,使气体能自由进出。当供水不足时,钾则被泵出保卫细胞外,孔隙关闭,以防水分亏损。若供钾不足,气孔将变得反应迟钝,造成水蒸汽逸损;反之,供钾充足的植株则不易遭受水分胁迫。 3、光合作用 利用太阳能将二氧化碳和水化合成糖分这一过程最初形成的高能物质是三磷酸腺苷(ATP),ATP 继而作为能源用于其他化学反应。钾离子可以使ATP生成位置的电荷保持平衡状态。当植株缺钾时,光合作用和ATP 生成速度均减慢,因而所有依靠ATP的过程都受到抑制。钾在光合作用中的作用较为复杂,但在调节光合作用方面,钾对酶的活化和在ATP制造过程的作 用比它对气孔的调节作用更为重要。 4 、糖分运输 植物通过韧皮部将光合作用产生的糖分运输到植物的其他部位供利用或贮藏起来。植物的运输系

一氧化氮对人体的重要作用

一氧化氮对人体的重要作用 1.调节血管紧张度,降低血压 早期高血压没有明显症状,可能表现不出来。由于受损的内皮细胞不能产生足量的一氧化氮,一氧化氮缺乏导致了一系列心脑血管病,使血压更高、动脉硬化更严重,进入了恶性循环。与体内其他任何因素相比,一氧化氮能更好地舒张血管平滑肌(降低血管的阻力),随着平滑肌的舒张,血管扩张血流更容易通过,从而降低血压的目的。 2.改善糖尿病及其并发症;一氧化氮能够降低胰岛素抵抗力,提升胰岛素对血糖的敏感度,从而加快体内血糖的代谢;另一方面,一氧化氮能够修复血管内皮细胞,降低因糖质代谢而引发的血管、神经病变,从根本上抑制及改善糖尿病并发症。最后一氧化氮还能够清除体内的自由基,提升胰岛素受体敏感度,更好的起到代谢血糖的作用。 3.清除血管炎症,防止动脉硬化内皮的损伤能减少一氧化氮的生成。为了保持心血管的健康,机体需要产生有益于健康的足量的一氧化氮。事实上,当机体正在生成足量甚至过量的一氧化氮时,不可能形成斑块和动脉粥样硬化,甚至可逆转这些情况。 4.改善睡眠质量;科学家们在研究过程中发现如果一氧化氮配方科学有效的话,还可以改善睡眠质量。帕米诺一氧化氮采用科学的原料配比,在增加血管、神经供血量及营养供应的同时,又能够舒暖血管平滑肌,促进体内松果体素的自然分泌,从根本上改善睡眠质量。 5.防止凝血,清除血栓,预防心脑血管疾病在一氧化氮的诸多作用中,以舒张血管作用最为重要,这有助于调整血流至全身的每一个部位。一氧化氮可舒张和扩张血管以确保心脏的足够供血。一氧化氮也可以阻止血栓形成,血栓可诱发卒中和心脏病发作,同时一氧化氮可调节血压。一氧化氮的另一个重要作用就是减慢动脉硬化斑块在血管壁的沉积。在冠状动脉内,胆固醇和脂肪逐渐增多并形成动脉硬化斑块,结果是动脉变窄、甚至阻塞动脉,从而使心脏血液供应减少,一氧化氮可以消除这种斑块,从根本上改善甚至逆转心脑血管病。一氧化氮是维持冠状动脉舒张反应的重要物质。冠状动脉内一定量的一氧化氮的释放,能够维持较低的冠状动脉阻力,保证心脏充足的供血,特别是慢性心脑血管的人,能大大减少冠状动脉缺血的危害,防止冠心病的发作。 6.清除自由基,抗发炎,消肿胀,防止病毒入侵,抑制癌细胞一氧化氮能使引发心血管病发生的氧化应激降到最低。当大量存在的自由基未被清除之前,它们会抑制机体生成一氧化氮。当机体处于氧化应激时机体比正常产生较少的一氧化氮。抗氧化剂对改善这种状况有很好的帮助,机体的抗氧化剂类似清道夫,在自由基产生损伤前寻早并中和它们。白细胞利用一氧化氮不仅可以杀死一系列细菌、真菌和支原体到呢个病原体,而且对肿瘤也有对抗作用,由于一氧化氮能够诱导细胞的死亡和凋亡过程,故一氧化氮能很好的抑制肿瘤的生长,达到了防癌抗癌的目的。 结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义 精神源学说认为,在外因刺激下,病人出现较长期或反复较明显的精神紧张、焦虑、烦躁等情绪变化时,大脑皮层兴奋抑制平衡失调,导致交感神经末梢释放儿茶酚胺增加(主要是去甲肾上腺素和肾上腺素),从而使小动脉收缩,周围血管阻力上升,血压增高。

儿童肺功能系列指南(一):概述(完整版)

儿童肺功能系列指南(一):概述(完整版) 呼吸系统的疾病占儿童所有疾病的首位,其病死率也是5岁以下儿童的第1位。儿童经历自胎儿至青春期的年龄跨度以及身体迅速发育的过程[1],有着特有的生长发育规律。肺功能测定对于判断呼吸系统疾病尤其是在喘息性疾病的诊断、鉴别诊断、治疗及预后评估方面均有重要意义[2]。 肺功能检查是指运用特定的手段和仪器对受检者的呼吸功能进行检测、评价[3],是描述呼吸功能的一种重要方法,牵涉呼吸力学、流体力学和热力学等,理论上复杂。但经过一定的测试和计算机计算后,能用比较简单的方式回答临床问题[4]。 目前,国内儿童肺功能检查的普及率不高,尤其是欠发达地区和基层医院更低,检测质量参差不齐,亦无统一规范的儿童肺功能指南。故中国儿童肺功能协作组经过多年努力,就目前较为成熟的检测方式推出如下系列指南。本系列指南将从概述、肺容积和通气功能法、潮气呼吸法、脉冲振荡法、气道反应性测定(激发试验、舒张试验)及呼出气一氧化氮测定等领域进行阐述。 1 儿童肺功能检测技术的发展 肺功能技术最早是在古罗马时期,希腊医生Claudius Galen进行了最简单的肺容量测试。19世纪中期,伦敦的John Hutchinson发明了世界上第一台可定标的肺容量计。20世纪初期,丹麦的Christian Bohr提出弥散学说,并采用静态法完成了使用一氧化碳作为测试气体的弥散测定。

一氧化碳弥散测定法现在仍然是大多数肺功能设备的首选方式。21世纪,气道阻力(Raw)的测定理论和测试技术逐渐成熟。 在婴幼儿肺功能检测方面,1890年Eckerlein成功测定每分通气量(MV);1970年第一台婴幼儿体描仪问世;1980年Turner等发明强迫呼气(Squzee);20世纪80年代,由于计算机技术的迅速发展,儿童肺功能技术才开始广泛普及。 肺功能检测仪中,流速-容量传感器至关重要。最早出现的是水封式容量传感器,然后在水封式传感器的基础上发展出了干式滚桶式,之后由于计算机技术的发展,又出现了涡轮式、热丝式及压差式、超声式流量传感器,并一直使用至今,目前使用最多的是压差式的流量传感器。 2 儿童肺功能工作的开展 1991年欧洲呼吸协会/美国胸科协会(ERS/ATS)婴幼儿肺功能协作组成立,1996年发表标志性的"INFANT RESPIRATORY FUNCTION TESTING"一书[5]。2009年5月中国儿童肺功能协作组在苏州成立,自2011年起每年举行1次全国儿童肺功能学术会议。2013年中华医学会呼吸病学分会肺功能专业组在广州召开了"全国肺功能学术会议" ,同时成立了中国肺功能联盟[6]。2014年肺功能协作组纳入中华医学会儿科呼吸学组。目前全国共有60个协作单位,遍布全国30个省市自治区(除西藏外),并聘有顾问和秘书。2015年12月"中国儿童肺功能网站"正式启动。 3 相关的代表性文章和书籍 2002年,万莉雅等[7]发表的"3~14岁天津地区脉冲振荡正常值的测定"是中国最早涉及儿童脉冲振荡肺功能技术的大样本量正常预计值的文

一氧化氮对人体作用

一氧化氮对人体的七个作用 一氧化氮与血压调节 1、为什么血压会升高 为了理解高血压的机制,可以把它想象为一个末端带有喷嘴的水管。有两种方法可以提高水的压力:可以打开水龙头并通过水管泵出更多的税,也可以拧紧喷嘴以提高水流的阻力。血压的作用原理与这种方式相似,血压取决于心脏泵血的力量、全身的血管容量以及血管的阻力。收缩动脉使血流受阻从而导致血压升高,相反,如果动脉舒张管径变宽,血液就更容易流动,血压则下降。 2、高血压的危险性 高血压的危害主要表现在为靶器官的损伤,如果心脑肾致命损害。长期的高血压弱得不到有效改善,心脏就会因过度劳累而代偿性肥厚扩大,进而出现功能衰退,这就是是高血压性心脏病,心力衰竭;同理,管道内压力过高,脆弱硬化部分的管道就很容易爆裂,发生在脑血管,就是出血行脑卒中;同样,肾脏是极丰富的毛细血管网,这种微细血管网排除身体内读物的功能受损,体内有毒物质贮留与血内,即策划过难为肾功能衰竭、尿毒症。高血压若得不到及时的有效的控制,心、脑、肾三个重要的生命器官就会受到致命打击,从而产生严重的并发症,诸如:心:高血压性心脏病、冠心病、心力衰竭;脑:高血压性脑出血、脑梗塞;肾:肾功能衰竭、尿毒症。 而医学界众所周知,这些问题是可以在发现高血压之初进行预防的,而且是行之有效的,但当这些问题发生后,对以上或病人及家属来讲,不论是从所花费的精力、财力、体力上都将是徒劳而无益的。 如果您和2.7亿人一样已经患有高血压,发生心脑血管病的危险将是正常人的7倍以上。 3、一氧化氮如何降低血压 早期高血压没有明显症状,可能表现不出来。由于受损的内皮细胞不能产生足量的一氧化氮,一氧化氮缺乏导致了一系列心脑血管病,使血压更高、动脉硬化更严重,进入了恶性循环。与体内其他任何因素相比,一氧化氮能更好地舒张血管平滑肌(降低血管的阻力),随着平滑肌的舒张,血管扩张血流更童话已通过,从而降低血压的目的。 二、一氧化氮与糖尿病 1、什么是糖尿病 糖尿病病主要是由于体内胰岛素绝对或相对分泌不足而引发的糖、蛋白质、脂肪、水和电解质等一系列絮乱综合症,临床上以高血糖为主要特点,典型病例可出现多尿、多饮,多食、消瘦等表现,即“三多一少”症状。糖尿病分Ⅰ型和Ⅱ型糖尿病。在糖尿病患者中,Ⅱ型糖尿病所占的比例月为95%。现代医学研究证明Ⅱ型糖尿病人的主要病因是因为胰岛素抵抗(氧化应激),即胰岛素对血糖代谢的敏感度不够,不能正常的代谢血糖 2、糖尿病的危害 糖尿病并不可怕,可怕的是有血糖偏高引起的一系列并发症,如:心血管病变、脑血管病变、肾脏病变、神经病变、视网膜病变、糖尿病足等。糖尿病病人中75%的人患上了心脑血管病变,患病10年以上的人群中,80%最终死于肾脏衰竭,几乎所有人的糖尿病人都与不同程度的视网膜病变及神经病变。糖尿病将是21世纪比癌症还要恐怖的、严重威胁人类健康的慢性病! 3、一氧化氮对糖尿病的重要作用 一氧化氮能够降低胰岛素抵抗力,提升胰岛素对血糖的敏感度,从而加快体内血糖的代谢;另一方面,一氧化氮能够修复血管内皮细胞,降低因糖质代谢而引发的血管、神经病变,从根本上抑制及改善糖尿病并发症。最后一氧化氮还能够清楚体内的自由基,提示胰岛素受受体敏感度,更好的祈祷代谢血糖的作用 三、一氧化氮与性功能 1、性功能障碍的原因 正常的男子的性功能包括性欲、阴茎勃起、性高潮、射精和性满足等环节,如果其中任何渔歌环节发生问题二医学性生活的完善,医学上称之为性功能障碍。而女性的性功能障碍主要表现为性欲冷淡,性高潮缺乏及阴道痉挛,性生活异常疼痛与性生活障碍。 从医学来说肾动脉硬化会引起肾血流量的减少,引起肾功能障碍,影响性功能。从医学的观念来讲,肾藏精,主生殖,肾所藏之元阴和元阳是人身的根本,人体的各种生理活动,特别是性及生殖活动都由肾

一氧化氮说明

一氧化氮产品说明 一氧化氮性质 化学品中文名称:一氧化氮 化学品英文名称:nitrogen monoxide 中文名称2:氧化氮 英文名称2:nitric oxide 纯度:99.9% 规格:40L CAS No.:10102-43-9 EINECS号:233-271-0 分子式:NO 分子量:30.01 分子键长:115.08pm 键解离能:941.69kJ/mol 磁性:顺磁性 一氧化氮用途 一、化学工业 一氧化氮也可用于硝化生产工艺,它可与烯烃加成,生成二亚硝基化合物,后者可 被氧化为硝基化合物。 聚氯乙烯行业的聚合反应中止剂。 二、电子工业 一氧化氮主要用于电子工业中的硅氧化膜形成、氧化、化学气相沉积。 三、航天工业 一氧化氮可用于航天火箭和卫星的推进剂。 四、计量标准气、校正气 标准气、校正气、大气检测混合气。 环保检测。 五、生命科学和医疗 一氧化氮在疾病治疗中的应用包括两个方面: 一是直接输入气体一氧化氮(如吸入一氧化氮缓解肺动脉高压与呼吸窘迫),或利 用一氧化氮供体产生一氧化氮作用于靶器官或组织(如冠心病、心肌缺血、内毒素 性休克、肺动脉高压及阳痿等),从而起到缓解或治疗作用。 二是加入相关药物调节机体一氧化氮的生成速度,如L-精氨是合成一氧化氮的前体,对许多疾病(心血管疾病如高血压、高胆固醇血症、充血性心力衰竭等,肾脏疾病如急性肾衰、阻塞性肾病、慢性肾病及胃黏膜溃疡等)具有有益的治疗作用。 一氧化氮使用注意事项

操作注意事项:严加密闭,提供充分的局部排风和全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿透气型防毒服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。远离易燃、可燃物。防止气体泄漏到工作场所空气中。避免与卤素接触。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与易(可)燃物、卤素、食用化学品分开存放,切忌混储。储区应备有泄漏应急处理设备。 以上资料由谱源气体收集整理,欢迎广大客户学习借鉴

呼出气一氧化氮检测的最新进展

呼出气一氧化氮检测的最新进展 (一)纳库仑一氧化氮分析仪的技术路线: 纳库仑一氧化氮分析仪通过测定人口呼出气中一氧化氮浓度,提示气道中嗜酸性炎症水平。可以通过在线呼气取样和离线气袋取样两种模式来测量。NO在人呼出气的浓度极低,该设备通过内置的纳库仑电量法传感器,将微量NO浓度信号转换为电量信号进行精确测量。该产品属于医用电子仪器设备中的呼吸功能及气体分析测定装置。严格遵守美国胸科学会(ATS)与欧洲呼吸学会(ERS)2005年联合制定的呼气一氧化氮检测标准指南的推荐(“ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005”)。该产品具有多项国际国内专利发明,具有医疗器械许可证和注册证,通过ISO13485,ISO9001质量体系认证及CE产品认证。 (二)该项技术的国内外应用情况: eNO已有20多年的发展历史,1991年发现eNO源于起到细胞分泌产生的内源性气体,93年发现哮喘患者eNO浓度升高,此后又不断发现eNO与测定嗜酸性气道炎症的肺泡灌洗,诱导痰,支气管激发等实验结果高度关联,而且可以检测多种呼吸道及飞呼吸道疾病,2003年美国FDA批准eNO检测设备用于哮喘等气道炎症疾病临床检测,2005年美国胸科学会(ATS)与欧洲呼吸学会(ERS)联合制定eNO临床检测技术标准,2009年ATS与ERS联合推荐eNO作为哮喘管理手段,2011年ATS推荐并发布最新的临床应用指南,美国NIH电子数据库检索的eNO国际文献已超过2000多篇。 目前已经将eNO作为临床常检项目的有美国,芬兰,西班牙,德国,瑞典,澳大利亚,新西兰,法国,意大利,日本,香港和台湾等47个国家和地区(统计截止到2008年3月31日)。 我国也在2007年将一氧化氮呼气测定列入全国医疗服务收费项目。统一收费代码:310601013(国家发改委、卫生部和国家中医药管理局:发改价格[ 2007]2193号) 。 上海地区已经进入上海地区医保收费项目,其医保收费代码为:S31060101300010,收费标准为250元/次(上海医保,2012/8/7)。 (三)适应症: 2011年美国胸科协会(ATS)发表的呼出气NO临床应用指南指出,eNO临床应用包括:嗜酸性气道炎症检测、糖皮质激素药物应答评估、监控气道炎症以及有助于选择合适的糖皮质激素药物治疗方案。主要建议如下: ●推荐eNO应用于嗜酸性气道炎症的诊断。 ●推荐eNO应用于判定由于炎症引起的有慢性呼吸道症状的患者的激素应答。 ●建议在需要客观证据时,eNO可用于哮喘的辅助诊断。 ●推荐低于25 ppb 的eNO值(儿童低于20 ppb)预示着无嗜酸性炎症或激素应答。 ●推荐高于50 ppb 的eNO值(儿童高于35 ppb)预示着存在嗜酸性炎症,对于有症 状的患者,存在激素应答。 ●推荐用eNO进行哮喘患者的气道炎症监控。 (四)禁忌症: 呼出气一氧化氮检测属于无创性检测,检测方便快捷,无明显的临床应用禁忌。 但在下列人群中可能不合适:无意识患者;口腔严重畸形的患者;口腔严重感染的患者;机械通气的患者;气胸的患者;大量胸腔积液的患者。 (五)不良反应: 呼出气一氧化氮检测属于无创性检测,正常吸气后保持匀速吹气4.5s左右(儿童2s左右)即可完成测试,对一般患者无不良反应。

一氧化氮的生物功能

一氧化氮与人体生物功能 近来发现一氧化氮(nitric oxide,NO)广泛分布于生物体内各组织中,特别是神经组织中。它是一种新型生物信使分子,1992年被美国Science杂志评选为明星分子。NO是一种极不稳定的生物自由基,分子小,结构简单,常温下为气体,微溶于水,具有脂溶性,可快速透过生物膜扩散,生物半衰期只有3-5s,其生成依赖于一氧化化氮合成酶(nitric oxide synthase , NOS )并在心、脑血管调节、神经、免疫调节等方面有着十分重要的生物学作用。因此,受到人们的普遍重视。 1. NO生物活性的发现 医学知识告诉我们,有两种重要的物质作用于血管平滑肌,它们分别是去甲肾上腺素和乙酰胆碱。去甲肾上腺素通过作用于血管平滑肌细胞受体而使其收缩。对于乙酰胆碱是如何作用于血管平滑肌使之舒张,其途径尚不清楚,医学界一起在致力于研究。 1980年,美国科学家Furchaout 在一项研究中发现了一种小分子物质,具有使血管平滑肌松驰的作用,后来被命名为血管内皮细胞舒张因子(endothelium-derived relaxing factor, EDRF)是一种不稳定的生物自由基。EDRF被确认为是NO。众所周知,硝酸甘油是治疗心胶痛的药物,多年来人们一直希望从分子水平上弄清楚其治疗机理。近年的研究发现,硝酸甘油和其它有机硝酸盐本身并无活性,它们在体内首先被转化为NO,是NO刺激血管平滑肌内cGMP 形成而使血管扩张,这种作用恰好同EDRF具有相似性。1987年,Moncada等在观察EDRF对血管平滑肌舒张作用的同时,用化学方法测定了内皮细胞释放的物质为NO,并据其含量,解释了其对血管平滑肌舒张的程度。1988年,Polmer等人证明,L-精氨酸(L-argi-nine , L-Arg)是血管内皮细胞合成NO的前体,从而确立了哺乳动物体内可以合成NO的概念。 2. NO的生物学作用 (1)在心血管系统中的作用 NO在维持血管张力的恒定和调节血压的稳定性中起着重要作用。 在生理状态下,当血管受到血流冲击、灌注压突然升高时,NO作为平衡使者维持其器官血流量相对稳定,使血管具有自身调节作用。能够降低全身平均动脉血压,控制全身各种血管床的静息张力,增加局部血流,是血压的主要调节因子。 NO在心血管系统中发挥作用的可能机制是通过提高细胞中鸟苷酸环化酶(guanylate cyclase , GC)的活性,促进磷酸鸟苷环化产生环一磷酸鸟苷(guanosine 3′, 5′–cyclic monophosphate cGMP),使细胞内cGMP水平增高,继而激活依赖cGMP的蛋白激酶对心肌肌钙蛋白Ⅰ的磷酸化作用加强,肌钙

钙元素在植物中的作用

酸性土壤主要分布于南方地区,种类有:棕壤、褐土、娄土、灰褐土、灌淤土等。 碱性土壤多分布于北方地区,种类有:碱土、黄绵土、黑垆土、棕钙土、栗钙土等。 土壤的主要类型: 1.棕壤:棕壤又称棕色森林土,主要分布于半湿润半干旱地区的山地垂直带谱中,如秦岭北坡、吕梁山、中条山、六盘山等高山与洮河流域的密茂针叶林或针阔混交林的林下。在褐土分布区之上。 具有深达1.5-2m发育良好的剖面,有枯枝落叶层、腐殖质聚积层,粘化过渡层,疏松的母质层等。表土层厚约15-20cm,质地多为中壤。其下则为粘化紧实的心土层,粘粒聚合作用明显,厚约30-40,富含胶体物质和粘粒,有明显的核状或棱块状结构,在结构体表面有明显的铁锰胶膜复被。再下逐渐过渡至轻度粘化的底土层。K、Ca、Mg、Mn在表层腐殖质中有明显聚积。土壤胶体吸收性较强,土壤代换总量约5—25当量/100g土,土壤吸收性复合体大部分为盐基所饱和,盐基饱和度达80%以上。土壤呈微酸性反应,PH值6.5左右。发育在酸性基岩母质上的棕壤,PH值可达5.5-6,盐基饱和度也较低,约在60—70%。棕壤土养分释放迅速,因土壤质地粘重,结构和通透性差,水分不易入渗,在地势较高的山坡地,易受干旱威胁,在地势低洼地带,又易形成内涝。 2.褐土:褐土分布区为暖温带半干旱半湿润的山地和丘陵地区,在水平分布上处于棕壤以西的半湿润地区,在垂直分布上,位于棕壤带以下,在黄土高原地区主要分布于秦岭北坡、陇山、吕梁山、伏牛山、中条山等地形起伏平缓、高度变化不大的山地丘陵和山前平原以与河谷阶地平原。 褐土多发育在各种碳酸盐母质上,其成土过程,主要是粘化过程和碳酸钙的淋溶淀积过程。典型的褐土剖面包括暗灰色的腐殖质层(A层)、鲜褐土的粘化层(B层)、碳酸钙积聚的钙积层(BCa)和母质层(C层)。土体中的粘化现象明显,粘化层紧实而具有核状或块状结构,物理性粘粒含量一般在30—50%。钙积层碳酸钙含量20—30%。土壤上层呈中性或微酸性反应,下层呈中性或微碱性。土壤代换量较高,可达20—40mg当量/100g土,代换性盐基以钙、镁为主,粘粒矿物以水云母和蛭石为主。具有良好的渗水保水性能,但水分的季节性变化明显,表现为春旱明显。土壤胶体吸收能力强,盐基饱和度高。在自然植被下,有机质含量为1—3%,但由于褐土适于耕作,大部分已辟为农地,致使有机质含量逐渐减少(一般为1%左右),氮磷贮量少。褐土肥效反应快,但稳肥性差。由于粘化现象明显,土壤易板结,耕性较差。 3.碱土:分布面积很小,主要分布在银川平原西大滩一带的洼地。其主要特征是土壤胶体复合体吸收了大量的交换性钠,土壤呈碱性,PH值大于9,农作物和高等植物均无法生长。 4.娄土:主要分布在潼关以西、宝鸡以东的关中平原地区,在山西的南部,河南的西部也有一定面积的分布。 娄土是褐土经人为长期耕种熟化、施肥覆盖所形成的优良农业土壤。其剖面构型大体可分上

相关文档
相关文档 最新文档