文档库 最新最全的文档下载
当前位置:文档库 › 轨迹方程求轨迹方程的的基本方法

轨迹方程求轨迹方程的的基本方法

轨迹方程

求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。

1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;

例1、某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?

【解析】设直径为3,2,1的三圆圆心分别为O、A、B,问题转化为求两等圆P、Q,使它们与⊙O相内切,与⊙A、⊙B相外切.

建立如图所示的坐标系,并设⊙P的半径为r,则 |PA|+|PO|=1+r+1.5-r=2.5

∴点P在以A、O为焦点,长轴长2.5的椭圆上,其方程为

=1 ①

同理P也在以O、B为焦点,长轴长为2的椭圆上,其方程为

(x-

)2+

y2=1 ②

由①、②可解得

,∴r=

故所求圆柱的直径为

cm.

◎◎双曲线的两焦点分别是

,其中

是抛物线

的焦点,两点A(-3,2)、B(1,2)都在该双曲线上.(1)求点

的坐标;(2)求点

的轨迹方程,并指出其轨迹表示的曲线.

【解析】(1)由

,焦点

(-1,0).

(2)因为A、B在双曲线上,

所以

①若

,则

,点

的轨迹是线段AB的垂直平分线,且当y=0时,

重合;当y=4时,A、B均在双曲线的虚轴上.故此时

的轨迹方程为x=-1(y≠0,y≠4).

②若

,则

,此时,

的轨迹是以A、B为焦点,

,中心为(-1,2)的椭圆,其方程为

,(y≠0,y≠4)

的轨迹是直线x=-1或椭圆

,除去两点(-1,0)、(-1,4)

评析:

1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

2.定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.

例2、已知ΔABC中,A,B,C所对应的边为a,b,c,且a>c>b,a,c,b成等差数列,|AB|=2,求顶点C的轨迹方程

【解析】|BC|+|CA|=4>2,由椭圆的定义可知,点C的轨迹是以A、B为焦点的椭圆,其长轴为4,焦距为2, 短轴长为2

, ∴椭圆方程为

,

又a>b, ∴点C在y轴左侧,必有x<0,而C点在x轴上时不能构成三角形,故x≠─2,

因此点C的轨迹方程是:

(─2

◎◎一动圆与圆

外切,同时与圆

内切,求动圆圆心

的轨迹方程,并说明它是什么样的曲线。

【解析】设动圆圆心为

,半径为

,设已知圆的圆心分别为

将圆方程分别配方得:

相切时,有

相切时,有

将①②两式的两边分别相加,得

移项再两边分别平方得:

两边再平方得:

整理得

所以,动圆圆心的轨迹方程是

,轨迹是椭圆。

◎◎已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.

【解析】设过B、C异于l的两切线分别切⊙O′于D、E两点,两切线交于

点P.由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故

|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|

=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知,

点P的轨迹是以B、C为两焦点的椭圆,

以l所在的直线为x轴,以BC的中点为原点,建立坐标系,可求得动点P的轨迹方程为:

评析:定义法的关键是条件的转化——转化成某一基本轨迹的定义条件。

三、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点

P(x,y)却随另一动点Q(x’,y’)的运动而有规律的运动,且动点Q的轨迹为给定

或容易求得,则可先将x’,y’表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。

例3、已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.

【解析】设点P(x,y),且设点B(x0,y0) ,则有

,∵BP∶PA=1∶2 ,

◎◎双曲线

有动点

是曲线的两个焦点,求

的重心

的轨迹方程。

【解析】设

点坐标各为

∴在已知双曲线方程中

,∴

∴已知双曲线两焦点为

存在,∴

由三角形重心坐标公式有

,即

。∵

,∴

已知点

在双曲线上,将上面结果代入已知曲线方程,有

即所求重心

的轨迹方程为:

评析:一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。

四、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。

例4、设点A和B为抛物线 y2=4px(p>0)上原点以外的两个动点,已知

OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线。

【解析】

解法一设A(x1,y1),B(x2,y2),M(x,y) (x≠0) ,直线AB的方程为x=my+a

由OM⊥AB,得m=-

,由y2=4px及x=my+a,消去x,得y2-4pmy-4pa=0

所以y1y2=-4pa, x1x2=

所以,由OA⊥OB,得x1x2 =-y1y2,所以

故x=my+4p,用m=-

代入,得x2+y2-4px=0(x≠0)

故动点M的轨迹方程为x2+y2-4px=0(x≠0),它表示以(2p,0)为圆心,以2p 为半径的圆,去掉坐标原点

解法二设OA的方程为

,代入y2=4px得

则OB的方程为

,代入y2=4px得

∴AB的方程为

,过定点

由OM⊥AB,得M在以ON为直径的圆上(O点除外)

故动点M的轨迹方程为x2+y2-4px=0(x≠0),它表示以(2p,0)为圆心,以2p 为半径的圆,去掉坐标原点

解法三设M(x,y) (x≠0),OA的方程为

,代入y2=4px得

则OB的方程为

,代入y2=4px得

由OM⊥AB,得: M既在以OA为直径的圆:

……①上,

又在以OB为直径的圆

……②上(O点除外),

+②得 x2+y2-4px=0(x≠0)

故动点M的轨迹方程为x2+y2-4px=0(x≠0),它表示以(2p,0)为圆心,以2p 为半径的圆,去掉坐标原点。

◎◎过点A(-1,0),斜率为k的直线l与抛物线C:y2=4x交于P,Q两点.若曲线C的焦点F与P,Q,R三点按如图顺序构成平行四边形PFQR,求点R的轨迹方程。

【解析】要求点R的轨迹方程,注意到点R的运动是由直线l的

运动所引起的,因此可以探求点R的横、纵坐标与直线l的斜率

k的关系.然而,点R与直线l并无直接联系.与l有直接联系的是点P、Q,通过平行四边形将P、Q、R这三点联系起来就成为解题的关键.

由已知

,代入抛物线C:y2=4x的方程,消x得:

、Q ,∴

解得

,设

,M是PQ的中点,则由韦达定理可知:

将其代入直线l的方程,得

∵ 四边形PFQR是平行四边形,∴

中点也是

中点

.∴

.∴ 点R的轨迹方程为

评析:

1.用参数法求轨迹是高考中常考的重要题型,由于选参灵活,技巧性强,也是学生较难掌握的一类问题。

2.用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。

3.要特别注意消参前后保持范围的等价性。

4.多参问题中,根据方程的观点,引入 n 个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。

五、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。

例5 、抛物线

的顶点作互相垂直的两弦OA、OB,求抛物线的顶点O在直线AB上的射影M的轨迹。

【解析】点A、B在抛物线

上,设A(

,B(

所以kOA=

kOB=

,由OA垂直OB得kOA kOB = -1,得yAyB= -16p2 ,又AB方程可求得

,即(yA+yB)y--4px--yAyB=0,把 yAyB= -16p2代入得AB方程(yA+yB)y--4px+16p2 =0 ①又OM的方程为

由①②消去得yA+yB即得

,即得

所以点M的轨迹方程为

,其轨迹是以

为圆心,半径为

的圆,除去点(0,0)。

评析:用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。

六、向量法:

例6 、设

,

为直角坐标平面内

轴正方向上的单位向量,若向量

,

,且

.

(1)求点

的轨迹

的方程;

(2)过点(0,3)作直线

与曲线

交于

两点,设

,是否存在这样的直线

,使得四边形

是矩形?若存在,求出直线

的方程;若不存在,试说明理由。

【解析】(1)由

,得

,设

则动点

满足

,所以点

在椭圆上,且椭圆的

.

所以轨迹

的方程为

.

(2)设直线的斜率为

,则直线方程为

,联立方程组

消去

得:

,

恒成立,

,则

.

,所以四边形

为平行四边形.若存在直线

,使四边形

为矩形,则

,即

,

解得

,所以直线

的方程为

,此时四边形

为矩形

◎◎设F(1,0),M点在x轴上,P点在y轴上,且

(I)当点P在y轴上运动时,求N点的轨迹C的方程;

(II)设

是曲线C上的三点,且

成等差数列,当AD的垂直平分线与x轴交于点E(3,0)时,求B点的坐标。

【解析】(1)∵

,故P为MN中点,又∵

,P在y轴上,F为(1,0),

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法 (一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )() ()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ???=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 4.求轨迹方程还有整体法等其他方法。在此不一一缀述。 课前热身: 1. P 是椭圆5 92 2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:( )【答案】:B A 、159422=+y x B 、154922=+y x C 、12092 2=+y x D 、5 3622y x + 【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得15 4922=+y x ,选B 2. 圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是

轨迹方程求解常用方法

圆锥曲线补充(1) 轨迹方程求解常用方法 一.定义法 如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。熟悉一些基本曲线的定义是用定义法求曲线方程的关键。 (1) 椭圆:到两定点的距离之和为常数(大于两定点的距离) (2) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (3) 抛物线:到定点与定直线距离相等。 例1一动圆与圆O :12 2=+y x 外切,而与圆C :0862 2 =+-+x y x 内切,那么动圆的 圆心M 的轨迹是: A :抛物线 B :圆 C :椭圆 D :双曲线一支 【解答】令动圆半径为R ,则有? ? ?-=+=1||1 ||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。故选D 。 例 2 已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足 ,sin 4 5 sin sin C A B = +求点C 的轨迹。 【解析】由,sin 45sin sin C A B =+可知1045 ==+c a b ,即10||||=+BC AC ,满足椭 圆的定义。令椭圆方程为 12 '22 '2=+ b y a x ,则34,5'''=?==b c a ,则轨迹方程为 19 252 2=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。 练习:1. 点M 到点F (4,0)的距离比它到直线的距离小1,则点M 的轨迹方程为____________。 【解答】:依题意,点M 到点F (4,0)的距离与它到直线的距离相等。则点M 的轨迹是以F (4,0)为焦点、为准线的抛物线。故所求轨迹方程为。 2.已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 解:如右图,以直线AB 为x 轴,线段AB 的中点为原 点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2, 即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中, 1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13 42 2-≠<=+x x y x .

轨迹方程的五种求法

轨迹方程的五种求法 一、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =u u u r u u u r ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =---u u u r ,,(3)PB x y =--u u u r ,,由2PA PB x =u u u r u u u r ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 二、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==,.2 2 5b a c =-=∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得00313 3x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来 例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=u u u r u u u u r ·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐

轨迹方程求轨迹方程的的基本方法

轨迹方程 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法; 例1、某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少? 【解析】设直径为3,2,1的三圆圆心分别为O、A、B,问题转化为求两等圆P、Q,使它们与⊙O相内切,与⊙A、⊙B相外切. 建立如图所示的坐标系,并设⊙P的半径为r,则 |PA|+|PO|=1+r+1.5-r=2.5 ∴点P在以A、O为焦点,长轴长2.5的椭圆上,其方程为 =1 ① 同理P也在以O、B为焦点,长轴长为2的椭圆上,其方程为 (x-

)2+ y2=1 ② 由①、②可解得 ,∴r= 故所求圆柱的直径为 cm. ◎◎双曲线的两焦点分别是 、 ,其中 是抛物线 的焦点,两点A(-3,2)、B(1,2)都在该双曲线上.(1)求点 的坐标;(2)求点 的轨迹方程,并指出其轨迹表示的曲线. 【解析】(1)由 得

,焦点 (-1,0). (2)因为A、B在双曲线上, 所以 , . ①若 ,则 ,点 的轨迹是线段AB的垂直平分线,且当y=0时, 与 重合;当y=4时,A、B均在双曲线的虚轴上.故此时 的轨迹方程为x=-1(y≠0,y≠4). ②若 ,则 ,此时, 的轨迹是以A、B为焦点,

, ,中心为(-1,2)的椭圆,其方程为 ,(y≠0,y≠4) 故 的轨迹是直线x=-1或椭圆 ,除去两点(-1,0)、(-1,4) 评析: 1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。 2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。 2.定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 例2、已知ΔABC中,A,B,C所对应的边为a,b,c,且a>c>b,a,c,b成等差数列,|AB|=2,求顶点C的轨迹方程 【解析】|BC|+|CA|=4>2,由椭圆的定义可知,点C的轨迹是以A、B为焦点的椭圆,其长轴为4,焦距为2, 短轴长为2 , ∴椭圆方程为

求轨迹方程的常用方法

求轨迹方程的常用方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

求轨迹方程的常用方法 (一)求轨迹方程的一般方法: 1. 定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t), y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。 4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程

例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足 ,sin 4 5 sin sin C A B = +求点C 的轨迹。 【变式】:已知圆 的圆心为M 1,圆的圆心为M 2,一动圆 与这两个圆外切,求动圆圆心P 的轨迹方程。 二:用直译法求轨迹方程 此类问题重在寻找数量关系。 例2:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程 【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2| || |=PB PA ),求动点P 的轨迹方程 三:用参数法求轨迹方程

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1.直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -, B (,0)a 。 设动点C 为(,)x y , ∵222||||||AC BC AB +=, ∴2224a +=, 即222x y a +=. 由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。 2.代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。 解:设A (,0)a ,B (0,)b ,M (,)x y , 一方面,∵||6AB =,∴2236a b +=, ① 另一方面,M 分AB 的比为12 ,

∴1022133122130121312 a x a a x b y b y b ?+??==??+?=???????=+??==?+?? ② ②代入①得:223()(3)362 x y +=,即221164x y +=。 评注:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。此外,与上例一样,求曲线的方程时,要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种求轨迹方程的方法称作几何法。 例3:如图,已知两定点A (6,0-),B (2,0),O 为原点,动点P 与线段AO 、BO 所张的角相等,求动点P 的轨迹方程。 解:设P (,)x y ,由题APO BPO ∠=∠,由三角形角平分线定理有|||||||| PA AO PB BO =, 3=, 整理得2260x y x +-=,当0x =时,0y =,P 和O 重合,无 意义,∴0x ≠, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有00APO BPO ∠=∠=, ∴0y =(6x <-或2x >)也满足要求。 综上,轨迹方程为22 60x y x +-=(0x ≠)或0y =(6x <-或2x >)。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题),方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数),使(,)x y 之间的关系建立起联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。

求轨迹方程方法总结

求轨迹方程方法总结 轨迹方程是描述物体运动路径的数学表达式。当我们了解物体的运动规律时,可以使用轨迹方程来描述其运动轨迹,从而帮助我们更好地理解和预测物体的运动。下面将总结几种常用的推导轨迹方程的方法。 一、基础几何方法: 1. 直线运动:对于直线运动,轨迹方程可以通过位移与时间的关系来推导。如果物体的初始位置为(x0, y0),速度为v,则物体在时间t后的位置(x,y)可以表示为 x = x0 + vt,y = y0。从而得到轨迹方程 y = y0 + vt。 2.曲线运动:对于曲线运动,可以通过几何关系来推导轨迹方程。例如,对于抛体运动,可以通过重力加速度和初速度的关系,推导出位置关于时间的二次方程,从而得到轨迹方程。 二、解微分方程方法: 1.一阶微分方程:对于一阶微分方程,可以通过求解微分方程得到轨迹方程。例如,对于匀加速直线运动,可以得到速度关于时间的一阶微分方程,通过求解得到速度与时间的表达式,再通过积分得到位移与时间的表达式,从而得到轨迹方程。 2.二阶微分方程:对于二阶微分方程,可以通过推导得到物体的运动规律,并进一步得到轨迹方程。例如,对于单摆运动,可以通过考虑受力平衡和受力大小的关系,推导出物体的运动方程,从而得到轨迹方程。三、向量方法:

1.位矢法:对于具有速度和加速度的运动,可以通过位矢法推导轨迹 方程。位矢是一个描述位置和方向的向量,通过将速度积分得到位矢,再 通过对位矢微分得到速度,通过对速度微分得到加速度,从而得到物体的 位矢关于时间的表达式。 2.矢量投影法:对于运动方向发生变化的运动,可以利用矢量投影法 推导轨迹方程。将位矢投影到坐标轴上,得到物体在各个坐标轴上的分量,从而得到轨迹方程。 四、参数方程方法: 1.参数方程是一种用参数表示物体运动轨迹的方法。可以将物体的运 动分解为水平方向与竖直方向上的分量,再通过参数来表示时间的变化。 将水平和竖直方向的分量分别定义为x(t)和y(t),则轨迹方程可以表示 为(x(t),y(t))。 五、数值模拟方法: 1.当物体的运动规律较为复杂或无法用解析方法得到轨迹方程时,可 以通过数值模拟方法来近似得到轨迹方程。通过将物体的运动划分为很小 的时间步长,利用数值方法模拟物体在每个时间步长的运动情况,从而得 到物体的运动轨迹。 总之,推导轨迹方程可以利用几何方法、微分方程方法、向量方法、 参数方程方法以及数值模拟方法。不同的方法适用于不同的运动规律和运 动方式,我们可以根据具体情况选择合适的方法来得到轨迹方程,从而更 好地理解物体的运动规律。

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种方法 一、直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。 例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。 解:设点P的坐标为(x,y), 则A(2x,0),B(0,2y),由|AB|=2a得 2) 2 x- -=2a + 2(y )0 2 0( 化简得x2+y2=a,即为所求轨迹方程 点评:本题中存在几何等式|AB|=2a,故可用直接法解之。 二、定义法 如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。 例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是() A、直线 B、椭圆 C、双曲线 D、抛物线 解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。 解法二:设P点坐标为(x,y),则 |x+4|-2 2 -=2 x+ (y )2 当x≥-4时,x+4-2 2 -=2化简得 x+ (y )2

当时,y 2=8x 当x <-4时,-x-4-22)2(y x +-=2无解 所以P 点轨迹是抛物线y 2=8x 点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。 三、 代入法 如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。 例3 P 在以F 1、F 2为焦点的双曲线19 1622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。 解:设P (x 0,y 0),G (x ,y ),则有 ??? ????++=+-=)00(31)4(3100y y x x x 即???==y y x x 3300,代入 191622=-y x 得19 91692 2=-y x 即116 922 =-y x 由于G 不在F 1F 2上,所以y ≠0 四、 参数法

高中数学求轨迹方程六种常用技法

求轨迹方程的六种常用技法 轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法 根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。 例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们的斜率之积是 49,求点M 的轨迹方程。 解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -, 设点M 的坐标为(,)x y ,则直线AM 的斜率(3)3 AM y k x x =≠-+,直线BM 的斜率(3)3 AM y k x x = ≠- 由已知有4(3)339y y x x x ∙=≠±+- 化简,整理得点M 的轨迹方程为22 1(3)94 x y x -=≠± 练习: 1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方 程是 。 2.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于A 、B 两点,P 是l 上满足 1PA PB ⋅=的点,求点P 的轨迹方程。 3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线 的平面内的轨迹是 ( ) A .直线 B .椭圆 C .抛物线 D .双曲线 2.定义法 通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。 例2.若(8,0),(8,0)B C -为ABC ∆的两顶点,AC 和AB 两边上的中线长之和是30,

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

轨迹方程的常见求法

轨迹方程的常见求法 1、直译解析法;该方法的主要思路就是将题目中的几何条件直接翻译为代数条件。它主要通过建系、设点、列式、化简、讨论等步骤得到所求的曲线轨迹方程。 例1设动直线l 垂直于x 轴,且与椭圆4222=+y x 交于B A 、两点,P 是l 上满足1=∙的点,求点P 的轨迹方程。 2、定义法;若动点轨迹直接符合已知圆锥曲线定义,则可直接利用定义写出其方程。 例2、已知定点A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,求另一焦点F 的轨迹方程. 例3、已知圆O :2216x y +=及点A(2, 0),求过A 且与圆O 相切的诸圆圆心P 的轨迹方程。

3、相关点法;若动点P(x, y)依赖于某已知曲线上的另一个动点P 1(x 1,y 1)而运动,且x 1, y 1可用x, y 表示,则将P 1(x 1,y 1)代入已知曲线,求出P 点的轨迹方程。此法也称代入法或转移法。 例4、定点A(3,0)为圆221x y +=外一定点,P 为圆上任一点,(除出圆与x 轴的交点), ∠POA 的平 分线交PA 于点Q, 求出Q 点的轨迹方程。 例5.如图所示,过椭圆E :12 322=+y x 上任一点P ,作右准线l 的垂线PH ,垂足为H 。延长PH 到Q ,使HQ=PH,(>0)λλ(1)当P 点在E 上运动时,求点Q 的轨迹G 的方程;(2)当λ取何值时,轨迹G 是焦点在平行于y 轴的直线上的椭圆?证明这些焦点都在同一个椭圆'E 上,并写出椭圆的方程;(3)当λ取何值时,轨迹G 是一个圆?判断这个圆与椭圆'E 的右准线'l 的位置关系。

求轨迹方程的十种技法

求轨迹方程的十种技法 春晖中学 冯志华 轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1直接法 根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。 例1 已知动点M 到定点A (1,0)与到定直线L :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线? 解设M (x,y )是轨迹上任意一点,作MN ⊥L 由 |MA |+|MN |=4,得|3|22)1(-++-x y x 当x ≧3时上式化简为 y 2=-12(x-4) 当x ≦3时上式化简为 y 2=4x 所以点M 的轨迹方程为 y 2 =-12(x-4) (3≦x ≦和y 2=4x (0≦x ≦3). 其轨迹是两条抛物线弧。 2定义法 圆锥曲线是解析几何中研究曲线和方程的典型问题,当动点符合圆锥曲线定义时,可直接写出其轨迹方程。 例2 在相距离1400米的A 、B 两哨所上,哨兵听到炮弹爆炸声的时间相差3秒,已知声速是340米/秒,问炮弹爆炸点在怎样的曲线上? 解 因为炮弹爆炸点到A 、B 两哨所的距离差为3×340=1020米,若以A 、B 两点所在直线为x 轴,AB 的中垂线为y 轴,建立直角坐标系,由双曲线的定义知炮弹爆炸点在双曲线 12510 2700225102=--y x 上. 3 转移法 若轨迹点P (x ,y )依赖于某一已知曲线上的动点Q (x 0, y 0),则可先列出关于x 、y, x 0、y 0的方程组,利用x 、y 表示出x 0、y 0,把x 0、y 0 代入已知曲线方程便得动点P 的轨迹方程。

相关文档
相关文档 最新文档